
QPTR

The Pointer Environment

6th Edition

QPTR The Pointer Environment 1

Foreword
This is what I presume to be the 6th edition of the QPTR guide, a guide and manual for

programming the Pointer Environment. The purpose is to have an up-to-date guide to the
Pointer Environment. This text is based on the original 5th edition of that guide, as it was
published by Jochen Merz. Except to make changes for error corrections and new insertions,
I left much of the original text untouched, even where it was mostly outdated (e.g. the Boot
programs for QRAM etc.).

All of this was made possible by, of course, the original writers of the original texts (Tony
Tebby, Jochen Merz, Marcel Kilgus), and thanks go to them. Thanks also to Dilwyn Jones
who somehow was able to get editable versions of the original pdf documents, to Norman
Dunbar for his work and to Tobias Fröschle who pointed out errors and inconsistencies..

As to the amendments made in this text, I corrected all errors I was able to spot. I also
tried to point out the differences between the plain QDOS variety of things and those for
SMSQ/E, where appropriate. Included in this edition are the updates as published by (I think)
Marcel Kilgus. Also included here are the updates as they are published in the “display_txt”
file of the SMSQ/E sources, where applicable. Thus, concepts like system palettes, new
CON vectors, new window move modes and sprite definitions etc. are all explained in this
manual now.

The “Config” section of the original manual, detailing the intricacies of the standard
Config levels, has been removed from this document – It has nothing to do with the Pointer
Environment and I feel that this should have its own manual.

The text here is preceded by two tables of contents, a short and a long one (you can
CTRL-left click on any of the entries to go to the relevant section) and is followed by what I
hope is a comprehensive index.

In this manual, S*Basic means the QL's SuperBASIC and SMSQ/E's SBASIC.
Sometimes you will find reference to assembler key files (e.g. keys_qdos_io). These refer to
the keys files as found in the “keys” subdirectory in the SMSQ/E sources. You should use
those key files, as the original QPTR ones may be outdated.

All remaining errors/omissions are mine.

Wolfgang Lenerz

v. 6.04 July 2018 various typos, item hit routine additional explanation,
added some hyperlinks, D2 in IOP.RPTR is long, not
word (for SMSQ/E, job events are in MSB of long
word!).

v. 6.01 May 2014 typos, IOP.SPRY, SPRAY, Sprite options, background
I/O and locked windows

v. 6.00 April 2014

QPTR The Pointer Environment 2

Short Table of Contents
Foreword...2

Short Table of Contents..3

Long Table of Contents...4

Introduction...8
The Pointer Toolkit.. 8

Where to start... 9
Compiled S*BASIC... 9
Bug "fixes".. 9

History, Geography, Philosophy & Economics..10
Some sample BOOT files..12
The Pointer Environment...15

Pointer.. 15
Windows... 16
Menus... 16
Sub-Windows... 17
Objects, Items etc...18
Window Definition...18
Event Vector... 20
Move Modes... 21

What you get... 23
The Demonstration Programs...25

The DEMO_ programs...25
General layout.. 25
The EDSPR program...27
The PAINT program...28

Concepts...30

S*BASIC...45
Keywords... 45

Pointer Interface routines...45
Window Manager routines..55

Index of keywords.. 66

Assembler...68
Programmer's Interface... 68

Pointer Interface...68
Window Manager... 88
New CON Vectors.. 135

Data Structures... 144
Pointer Interface...144
Window Manager... 157

Pointer Environment Changes..190
Pointer Toolkit Changes..190
Pointer Interface Changes...191

Utilities..200
CVSCR.. 200
STKINC... 200
FIXPF.. 201

Troubleshooting..202

Index...203

QPTR The Pointer Environment 3

Long Table of Contents
Foreword...2

Short Table of Contents..3

Long Table of Contents...4

Introduction...8
The Pointer Toolkit.. 8

Where to start... 9
Compiled S*BASIC... 9
Bug "fixes".. 9

History, Geography, Philosophy & Economics..10
Some sample BOOT files..12

A simple BOOT file to load and enable QRAM..12
Including SuperToolkit II with QRAM...13
A BOOT file for QRAM and QTYP together...13
SuperToolkit II, QMON, QRAM, QTYP, QPTR, and RAM disc..13
QRAM and Jochen Merz's QD..14
QRAM and Q_Liberator runtime system and extensions..14

The Pointer Environment...15
Pointer.. 15
Windows... 16
Menus... 16
Sub-Windows... 17
Objects, Items etc...18
Window Definition...18
Event Vector... 20
Move Modes... 21

What you get... 23
The Demonstration Programs...25

The DEMO_ programs...25
General layout.. 25
The EDSPR program...27
The PAINT program...28

Concepts...30
Action routine..30
Application object list...30
Application spacing list..30
Application sub-window...30
Application sub-window list...31
Background I/O...31
Blob...31
Bottom window..31
Control definition...31
Control routine..31
Draw routine..32
Hit area...32
Hit routine..32
Index items..32
Information object list..33
Information sub-window list...33
Initial position..33
Item...33
Item attributes...33
Item number..33
Job event..34
Locked window...34
Loose menu item..34
Loose item list...34
Managed window..35
Menu sub-window...35

QPTR The Pointer Environment 4

Outline...35
Pan/Scroll bars..35
Pattern..35
Pick...36
Pile..36
Pointer...36
Pointer Environment...36
Pointer Interface..36
Primary window...36
Scan order..37
Secondary window..38
Sections..38
Selection key...38
Setup...39
Setup routine...39
Size checking..39
Sprite...39
Status..39
Status block..40
Sub-menu...40
Sub-window..40
System palette..40
Timing out...41
Top window...41
Unlocked window..41
Unlockable window...41
Unmanaged window...41
Unset...41
Window definition..42
Window Manager..42
Working definition...42

A typical window..43

S*BASIC...45
Keywords... 45

Pointer Interface routines...45
Window Manager routines..55

Definition routines.. 55
Drawing routines... 58
Access routines... 60
Change routines.. 61
Array parameters... 62
New colour handling..63
Palette handling...63

System palette keywords...63
Job palette keywords..64

System sprites handling..65
Index of keywords.. 66

Assembler...68
Programmer's Interface... 68

Pointer Interface...68
Window Manager... 88

Setup Routines.. 89
Set Window Routines..95
Drawing Routines..97

Entire window drawing routine...97
Part window drawing routines..99
Set Window To Partial Areas Routines..105
Draw border around current item..107

Access Routines.. 108
Window Manager Read Pointer...108
Current Item...108
Keystroke Selection..109

QPTR The Pointer Environment 5

Pannable and Scrollable Sub-Windows...119
External Pan and Scroll...119
Internal Pan and Scroll..120

Sub-Window Indices...121
Window Move and Change Size..122

Utility routines..123
Index of TRAPs and vectors..133

New CON Vectors.. 135
Index of CON Vectors...143

Data Structures... 144
Pointer Interface...144

Channel Definition block..144
Extended Channel Block..145
Graphics objects...146

Form.. 146
Size... 147
Repeat... 147
Origin...147
Colour.. 147
Colours on new WMAN calls...147
Pattern... 149
Sprite Definition...149

Sprite header..150
Sprite mode byte..150
Sprite control byte..151
Alpha channel..151
RLE compression...151
Sprite block..153
Sprite options...154

Blob Definition...155
Pattern Definition...155
Area Mask...155
Partial Save Area Format..156

Window Manager... 157
Window Definition..157

Structure...157
Window definition..158
Window Attributes...158
Menu Item Attributes...159
Lower Level Definitions...159

Loose Menu Items List...159
Information Sub-Window..160
Information Object List...160
Application Sub-window List...160
Menu Object Lists..161
Application sub-window definition..162

Menu Macros...164
Structure.. 164
Rules and reserved symbols...165

Text Macros... 176
Index of macros..178

Working Definition...180
Header block.. 180
Window definition block..181
Window Attributes..181
Menu Item Attributes..182
Loose Menu Items List...182
Information Sub-Window..183
Information Object List...183
Application Sub-window List...183
Application sub-window definition...184
Menu Object Lists...185
Working Definition Organisation...186

QPTR The Pointer Environment 6

Window Status Area..187
Window linkage area..187
Window working area...187
Loose menu item status block..188
Sub-window menu item status block..188
Sub-window section control block header..189
Sub-window section control block record...189

Pointer Environment Changes..190
Pointer Toolkit Changes..190
Pointer Interface Changes...191

Utilities..200
CVSCR.. 200
STKINC... 200
FIXPF.. 201

Troubleshooting..202

Index...203

QPTR The Pointer Environment 7

Introduction

The Pointer Toolkit

The Pointer Toolkit is aimed at applications programmers who wish to produce programs
of the new "user-friendly" type. While many writers have produced very successful menu-
and pointer-driven programs, there have so far been no agreed standards, resulting in users
having to learn a new interface for each program, and each programmer having to re-invent
the wheel to implement his own menu and/or pointer system. With the advent of the QJUMP
Pointer Environment, all this is in the past. The programmer is relieved of the burden of
writing the whole of the user interface, often 90% of the programming effort, and can
concentrate on providing a good range of facilities. Users end up with a program which they
know how to drive even before they open the box.

The Pointer Environment is a complex piece of software which has been in development
for over a year at the time of writing, and is still being improved today. We therefore make no
apology for the length of this manual, nor for the amount of effort required to start using the
software: if it were an evening's work to learn all about it, it would not be a useful tool. We
realise that there are likely to be aspects of the software which programmers would like to
see treated in greater detail: anyone experiencing problems in using the software is always
welcome to contact us (preferably by letter) and we will do our best to advise.

The software is in several parts. The Pointer Interface extends and modifies the QL's
standard screen driver (the CON_/SCR_ device), taking care of the non-destructive windows
and the position and appearance of the pointer sprite (arrow, padlock etc.): in addition it
provides some extra TRAPs to read the pointer position, save window contents, write
graphics objects and so on.

The Window Manager provides a set of utilities for manipulating windows. It works on
data set up in memory, defining the size, position, colour and contents of windows. Routines
are provided to draw, move and remove a window, re-draw part of a window, and to get user
input via a window. If used from machine code then the programmer may provide routines to
be called under particular circumstances (e.g. hitting the QUIT item): from S*BASIC the
options are more limited, since S*BASIC procedures may not be called from within machine
code routines. The Pointer Interface must be present to use the Window Manager.

The combination of the Pointer Interface and Window Manager is called the Pointer
Environment. The combination of the Pointer Interface, Window Manager and the Hotkey
System II is called the Extended Environment. NOTE: The Extended Environment is
incorporated into SMSQ/E, there is no need to load the Pointer Toolkit separately.

The S*BASIC Pointer Toolkit gives the S*BASIC programmer access to the Pointer
Environment via a set of special procedures and functions. While not quite as flexible as
machine code, particularly when using the Window Manager, it provides a suitable base from
which to explore the system before attempting to use it from machine code. Both the Pointer
Interface and the Window Manager must be present to use the Pointer Toolkit.

Various applications are provided as examples of machine code and S*BASIC programs
using the Pointer Environment: the S*BASIC programs require the Pointer Toolkit, the
machine code ones do not. The S*BASIC sprite editor EDSPR uses only the extension
routines that call the Pointer Interface: the painting program PAINT also uses the Window

QPTR The Pointer Environment 8

Manager routines. There is a DEMO program which was written in S*BASIC and then re-
written in machine code: both versions do the same things, but achieve them in slightly
different ways.

For the machine code programmer there are some INCLUDE files of the keys needed to
use the Pointer Environment from assembler programs: a set of macros is also provided to
assist with setting up window definitions. These are suitable use with the GST Macro
Assembler and Linker: other assemblers and linkers may need modified versions.

Where to start
You should read the next section, describing the Pointer Environment and some of the

concepts it uses. Once you understand this you are well on the way to being able to write
your own programs. The next stage is to examine the DEMO program, either the S*BASIC
_BAS version or the _ASM and _BIN assembler version, depending on how strong you feel!
The demo doesn't do anything very useful, but it does show you how to set up a simple
menu with all the facilities described.

After this, you're on your own. S*BASIC programmers will find a description of the new
routines in the Keywords section, with a quick reference index at the end. Assembler
programmers have a description of the new TRAPs in the Pointer Interface section, and the
manager vectors in the Window Manager section of the Programmer's Interface chapter.
Of interest to all will be the Concepts chapter, and the Data Structures section of the
Programmer's Interface chapter, although the latter is essential reading only for assembler
programmers.

Compiled S*BASIC

You may wish to compile S*BASIC programs using the Pointer Toolkit to take advantage
of the increased speed and multitasking which are made possible by compiled S*BASIC
programs. There are some problems in doing this, whether you are using Digital Precision's
Super/Turbocharge compilers or Liberation Software's Q_Liberator.

Supercharge and Turbo do not permit machine code extensions to return changed
parameter values, and so the extensions to read the pointer position, RPTR, and to set one
line of a sprite, SPLIN, will not work. Furthermore, array parameters are not permitted, so
neither SPSET nor the majority of the Window Manager extensions will work.

Older versions of Q_Liberator restrict the amount of stack that a machine code extension
may use to a smaller amount than that provided by the interpreter: while both allowances are
more than stated in the QL Technical Guide, the large amount of stack used by the Window
Manager causes problems with Q_Liberated programs compiled using versions up to and
including v3.12. Versions 3.21 onwards have an increased stack allowance which fixes this
problem, and a utility program, called STKINC, is provided to overcome this problem in older
versions of Q_Liberator - see the Utilities chapter for details. Moreover, newer versions of
Q_Liberator have the “$$stak” directive with which you can increase the stack in your
program.

Bug "fixes"
Some toolkits and extensions "fix bugs" in S*BASIC by replacing ROM routines with their

own: where these cause more trouble than they cure the old routine may be restored using
the FIXPF utility, described in the Utilities chapter.

QPTR The Pointer Environment 9

History, Geography, Philosophy & Economics

Why the world is the way it is

As you will have noticed, all QJUMP software comes split into a number of separate
components, which need to be assembled correctly to "install" the new facilities on your QL.
Why have we made life so difficult for you?

In the beginning (always a good start, that), the QL was designed to be an expandable
multi-tasking machine, allowing you to use software from many suppliers simultaneously to
achieve an environment that you can work with comfortably. If you feel that your word
processor program is too large or too slow, you can change to another one without changing
your spreadsheet or database, which must surely be an improvement over the pre-packaged
"integrated programs" available for the current series of IBM PCs and clones. The situation is
very like buying hi-fi. You can go for the music centre or tower system, with everything in one
box and known to be compatible, or you can take a little more trouble and buy separate
components from different manufacturers: the latter solution may result in a bird's nest of
wire and a pile of different styled boxes, but the performance will probably be closer to what
you were after.

Given the above design philosophy, software for the QL falls into two categories.
"Resident extensions" expand the facilities available to the system, by adding new devices or
S*BASIC procedures: RAM disks and SuperToolkit II are examples of resident extensions.
"Transient programs" provide services to the user, allowing you to edit text or pictures, play
games or what have you: Quill is a typical transient program. As implied by the name,
resident extensions are designed to be loaded at the start of a session, and remain resident
until the QL is restarted. They should be loaded into the "resident procedure area": space for
the extensions may be reserved in this by a call to S*BASIC's RESPR function, and cannot
be freed once allocated. Transient programs are started by the user as required, and
disappear from memory when terminated, leaving it free for other transient programs. Space
for transient programs is allocated in the "transient program area" by S*BASIC's EXEC
procedure or QPAC II's EXEC etc. menus., and automatically reclaimed by the operating
system when the program is terminated.

A limitation imposed by QDOS, the operating system in the QL, is that while there are
programs in the transient program area, additional space may not be allocated in the
resident procedure area. If you try to allocate more space, using RESPR or LRESPR
commands, you will get a "not complete" error message. Ideally you will know what
extensions may be required during a session, and arrange for them all to be loaded before
starting any programs. In an emergency you can remove all transient programs so that
another extension can be loaded, but this is not very convenient! The reason for the
limitation is that transient programs "live" just below resident extensions in the memory, both
"grow" downwards, and transient programs cannot be moved to make space for new
extensions. This limitation does not exist for SMSQ/E, where the LRESPR command will
succeed even if there are programs running in the transient program area.

The reason for QJUMP's software being split into separate components thus becomes
clear. Some components can be written in such a way that they extend the facilities available
via operating system, for instance by adding new devices or extending old ones. The Pointer
Interface extends the Screen Device Driver, the SPELL device is a completely new one.
These extended facilities can then be used, not only by the other components of the software
package as supplied, but also by other software writers in their own code. The benefits of
this approach are manifold. Firstly, any "dirty" code that is required can be buried out of sight
in the extensions, so applications that use them can be totally clean: if any problems arise
from the dirty code then only the extensions need be changed. Secondly, the extensions will
often provide much of the "difficult" code: writing a menu-driven spelling-checking word

QPTR The Pointer Environment 10

processor is much simpler if you don't have to consider how to implement pull-down menus
or the best method of compressing a word list. Thirdly, applications can be smaller, leaving
more space for further applications or user data, and making them easier to debug. This is
particularly valuable with the Pointer Environment, which occupies about 25k. If it were
included in individual programs, then they would be approximately that much bigger, and you
would not get the benefit of non-destructive windows in other programs.

So the typical QJUMP software package consists of a set of "public" extensions, which
are loaded in by your BOOT program, plus the application itself, which may be EXECuted as
required. The applications themselves tend to be quite small, because they share the
extensions with others.

Where it is useful to run more than one copy of an application at once, a further trick may
be added: a separate job may be started for each copy, but the same code can be shared by
both jobs, thus economising on the total space required. This will only work if the application
has been written properly, so that is does not modify its own code or embedded data. In this
case the code is said to be "re-entrant". This approach is used by the "hotkey" facility
provided by the QRAM package, and is improved by the HOTKEY System II, which comes
with QTYP II, QPAC II, QD or the QL-Emulator for the ATARI ST and is included as standard
with SMSQ/E. Each time when a given hotkey is pressed a new copy of an application is
started as if executed from microdrive or disk, but without the same speed or memory
penalty.

QPTR The Pointer Environment 11

Some sample BOOT files
The QL's BOOT facility is intended to be used to set up the QL with all the resident

extensions required for a session, which may come from many different sources. The BOOT
file is also used in much commercial software to give users instant access to their new
software - many users never progress beyond this point, but re-boot their QLs every time
they wish to change programs!

Modifying your existing BOOT program to cope with new software can vary from the very
easy to the impossible. Very easy BOOT files would consist of EXEC devN_filename, in
which case no changes are necessary to your own BOOT. Difficult conversions are where
the software's original BOOT file indulges in copyright messages, pretty borders, playing
tunes or other methods of obscuring the useful bits of code. Impossible BOOT files are those
which include POKEs, or start an application with a CALL statement - these can sometimes
be used, but require the attention of an expert machine code hacker to convert them to a
sanitary form.

To modify your BOOT program, you will have to determine which resident extensions are
needed to run the software. This may be apparent from the manual, or can be found by
examining the software's own BOOT file: any code loaded by statements of the form:

base=RESPR(size):LBYTES devN_filename,base:CALL base
or

LRESPR devN_filename
(if you have Toolkit II or SMSQ/E)

may be assumed to be a resident extension. The statements can be copied into your own
BOOT file at the appropriate point, and the file itself copied to your normal BOOT disc. The
above form may be scattered over a number of lines, or obscured by reserving just one area
with the RESPR call and LBYTESing several files into it, but the principle remains the same.

In the following examples, the file sizes given are not necessarily accurate: you should
use the QRAM Files menu or SuperToolkit II to find the actual size required. It is assumed
that the boot medium is in "flp1_": this can of course be changed to any device of your
choice. All the examples use the "ptr_gen" version of the Pointer Interface, which works with
the QJUMP Internal Mouse Interface, the QL-Emulator for the ATARI ST or the Sandy
SuperMouse interface, as well as the keyboard. It supersedes previous versions of the
Pointer Interface such as "ptr_kbd", "ptr_imi" and that invoked by the Sandy SuperMouse
POINTER command. Please note that SMSQ/E already contains the Pointer Environment
and does not need ptr_gen or wman to be loaded.

A simple BOOT file to load and enable QRAM

100 base=RESPR(12388):LBYTES flp1_ptr_gen,base:CALL base
110 base=RESPR(7762) :LBYTES flp1_wman,base:CALL base
120 base=RESPR(25882):LBYTES flp1_hotkey,base:CALL base
130 HOTKEY

(Please note that the sizes for the RESPR are indications only and change with new
versions of these files.)

The HOTKEY statement in line 130 starts a transient program called HOTKEY, which is
responsible for acting on the "ALT /" keystroke and starting QRAM. Once this program is
present, it is impossible to reserve space for any more resident extensions without removing
the HOTKEY program, so the HOTKEY statement will always occur after all the RESPR
statements in the BOOT file.

QPTR The Pointer Environment 12

Including SuperToolkit II with QRAM

100 base=RESPR(16384):LBYTES flp1_tk2_rext,base:CALL base
110 base=RESPR(12388):LBYTES flp1_ptr_gen,base:CALL base
120 base=RESPR(7762):LBYTES flp1_wman,base:CALL base
130 base=RESPR(25882):LBYTES flp1_hotkey,base:CALL base
140 HOTKEY

or
100 TK2_EXT
110 base=RESPR(12388):LBYTES flp1_ptr_gen,base:CALL base
120 base=RESPR(7762):LBYTES flp1_wman,base:CALL base
130 base=RESPR(25882):LBYTES flp1_hotkey,base:CALL base
140 HOTKEY

Line 100 initialises SuperToolkit II, in the first case from a file "tk2_rext" produced using
the configurable version of the toolkit, in the second case from the ROM on a suitably-
equipped disc interface.

A BOOT file for QRAM and QTYP together

100 base=RESPR(5424):LBYTES flp1_qtyp_spell,base:CALL base
110 base=RESPR(12388):LBYTES flp1_ptr_gen,base:CALL base
120 base=RESPR(7762):LBYTES flp1_wman,base:CALL base
130 base=RESPR(29538):LBYTES flp1_hotkey,base:CALL base
140 HOTKEY

As for the SuperToolkit II example, the SPELL extensions are loaded in the normal way:
the QTYP program itself is assumed to be included in the "flp1_hotkey" file with QRAM.

SuperToolkit II, QMON, QRAM, QTYP, QPTR, and RAM
disc

100 base=RESPR(16384):LBYTES flp1_tk2_rext,base:CALL base
110 base=RESPR(11242):LBYTES flp1_qmon_bin,base:CALL base
110 base=RESPR(5424):LBYTES flp1_qtyp_spell,base:CALL base
120 base=RESPR(12388):LBYTES flp1_ptr_gen,base:CALL base
130 base=RESPR(7762):LBYTES flp1_wman,base:CALL base
140 base=RESPR(29538):LBYTES flp1_hotkey,base:CALL base
150 base=RESPR(9234):LBYTES flp1_qptr,base:CALL base
160 base=RESPR(5108):LBYTES flp1_ramprt,base:CALL base
170 HOTKEY
200 OUTLN #0;512,256,0,0
210 IF RMODE=8 THEN
220 WINDOW #0;448,40,32,216
230 ELSE
240 WINDOW #0;512,50,0,206
250 END IF260 AT #0;1,0

This loads all those QJUMP products. Apart from having to load "wman" after "ptr_gen",
the order of files is unimportant. As usual, the call to HOTKEY must come last. Lines 200
onward are needed if the Pointer Toolkit is to function correctly.

QPTR The Pointer Environment 13

QRAM and Jochen Merz's QD

100 base=RESPR(12388):LBYTES flp1_ptr_gen,base:CALL base
110 base=RESPR(7762):LBYTES flp1_wman,base:CALL base
120 base=RESPR(25882):LBYTES flp1_hotkey,base:CALL base
130 base=RESPR(14386):LBYTES flp1_menu_rext,base:CALL base
140 HOTKEY

QD Version 2 or 3 from Jochen Merz Software requires the Menu Extension if it is to run,
so the "menu_rext" file is loaded in the BOOT file. A copy of this Editor may then be started
at any time by EXECuting it from S*BASIC, thus:

EXEC flp1_QD

It may also be started from QRAM's or QPAC II's Files menu, of course.

QRAM and Q_Liberator runtime system and extensions

100 base=RESPR(10016):LBYTES flp1_qlib_run,base:CALL base
110 base=RESPR(1928) :LBYTES flp1_qlib_bin,base:CALL base
120 base=RESPR(1476) :LBYTES flp1_qlib_ext,base:CALL base
140 base=RESPR(12388):LBYTES flp1_ptr_gen,base:CALL base
150 base=RESPR(7762) :LBYTES flp1_wman,base:CALL base
160 base=RESPR(25882):LBYTES flp1_hotkey,base:CALL base
170 HOTKEY

This example loads the extensions used to run the Q_Liberator compiler, which may then
be run as detailed in the manual. As the runtime system is also loaded, any Q_Liberated
programs which do not include it may also be EXECuted.

QRAM is supplied with a utility called BOOT_MAKE, which may be used to speed loading
of resident extensions by putting them all into one long file, which loads faster than many
shorter files. As a side-effect, there may be a slight reduction in the amount of memory
required.

BOOT_MAKE produces two files, a S*BASIC file normally called "flp1_boot", and the
resident extensions file which is of the same name but with the extension "_rext". Extension
files may be copied from any number of source media into the "_rext" file, changing the
source medium as required: as the destination medium is always being written to, it must
stay in the drive until BOOT_MAKE has finished. The dialogue to produce an BOOT file
equivalent to that described in example 5 above might be as follows:

Boot filename> flp1_boot
Command (ESC to finish)>
Extension file (ESC to finish)> flp2_xtras
Extension file (ESC to finish)> flp2_ptr_gen
Extension file (ESC to finish)> flp2_wman
Extension file (ESC to finish)> flp2_hotkey
Extension file (ESC to finish)>
Command (ESC to finish)> hotkey
Command (ESC to finish)>

The resulting BOOT file would be:

100 base=RESPR(52106):LBYTES flp1_boot_rext,base:CALL base
110 hotkey

QPTR The Pointer Environment 14

The Pointer Environment
The Pointer Environment for the QL is a comprehensive display- handling interface which

improves on the QL's simple window system. It differs from the QL's standard interface in two
respects. Firstly, the interface allows overlapping non-destructive windows. Secondly, a
window (and by association a job) may be selected for attention directly, using a pointer, as
well as indirectly, using the "CTRL C" key on the keyboard.

These differences are intended to be as invisible as possible to existing software: in
particular, a considerable amount of time has been spent ensuring that the commonly-used
Psion packages will run happily. The major implication of the differences is that significantly
more memory is required when using the Pointer Environment.

The Pointer Environment is implemented as two levels. The normal entry is to the
Window Manager level, which handles windows and menus. The Pointer Interface level is
used by the Window Manager and provides extra Trap #3 entries as used for standard IO
operations.

Pointer
All pointer input from the user is directed to a point on the display. The pointer may be

visible or invisible, and it may be moved by the cursor keys, joystick or pointing device or
else its position may be set directly, either by the Window Manager as a result of a single
keystroke, or by an application program.

An object shown on the display may be "hit" by moving the pointer to the object and
pressing SPACE, the fire button on a joystick or the left button on a mouse. Within a menu, a
keystroke may cause a "hit" as well as setting the pointer position. This allows a menu to be
treated either as a single key command system, or else as a point and hit menu system. A
"hit" on an item will usually select or de-select that item, but only rarely causes other action to
be taken.

ENTER or the right mouse button is known as "do": this differs from a "hit" in that it
usually selects the current item and results in an action being performed. The exact
interpretation of the difference is ultimately left to the programmer.

Note that an application may only get pointer input from a "managed" window. It is
thus very important that any window intended for pointer input should have had its
outline set, to signal to the Pointer Interface that it is managed: see the S*BASIC
Keywords section, the Concepts chapter, and the Assembler Programmer's Interface
section for details.

QPTR The Pointer Environment 15

Windows
In the context of the Pointer Environment, a window is more than just a portion of the

display. An application using the display has just one primary window. Sub-windows may be
enclosed within this window, allowing multi-window operation of application programs. An
application may open secondary windows within its primary window, but it may not use the
area of the display outside its primary window. A secondary window may have sub-windows
itself, each enclosed within the secondary window area. Such secondary windows are
frequently used to provide pull-down menus. Depending on the complexity of the application,
it may be useful to pull down further windows from within a pull-down menu: these "daughter"
pull-down windows are limited to be within their parent primary, not their parent pull-down,
otherwise pull-down menus would have to get progressively smaller!

The distinction between a sub-window and a secondary window is that a sub-window is
merely a division of a window: it does not have its own channel. A secondary window,
however, is a genuine IO channel with its own independent existence. The Window Manager
utilities assume that when one or more secondary windows have been pulled down, all IO
operations by that job will be carried out within the most recently pulled-down secondary until
it is thrown away.

The size and position of a window (primary or secondary) may be changed by the job that
owns it at any time: it is up to the programmer to provide this facility, where appropriate, to
enable the user to adjust the display to execute as many jobs as he wishes at any one time.

Where primary windows overlap, the window below is “locked” until the window above is
moved or removed, or the window below is brought to the top of the pile. It is possible to
move a window to the top of the pile by "hitting" it. Unless background I/O (see the
Concepts section) is switched on, a window which is locked may not be modified in any way,
so applications which rely on continuous modification of their windows (e.g. the ubiquitous
clock programs) will not work as intended. It is possible to unlock windows, so that they
become destructive. If background I/O is switched on, many window operations will succeed
even if the window is locked.

Menus

The Window Manager includes facilities for handling menus. A menu is a collection of
items which may be "hit". Menu items may be of several types: text, blobs, patterns and
sprites. Menu items may also have several uses. "Hitting" an item may cause an action, it
may select the item for some future action or it may cause a further pull down menu window
to be invoked.

The primary window, and any other window pulled down, is treated as a menu. There are
a number of standard menu items which will appear in many windows: these have standard
"hit" keystrokes which should be used to keep software consistent between different
packages.

CANCEL should always be present to enable a window to be removed without doing any
(further) operation. This item should be "hit" by the keystroke ESC.

HELP should usually be present to provide assistance to the user. This item should be
"hit" by the keystroke F1.

DO may sometimes be present to do any actions set up within the window. This item
should be "hit" by the keystroke ENTER.

QPTR The Pointer Environment 16

MOVE should usually be present to allow the window to be moved. This item should be
"hit" by the keystroke CTRL F4.

SIZE will be present if it is possible to change the size of a window. This item should be
"hit" by the keystroke CTRL F3.

WAKE will be present if it is possible to update the contents of a menu. This item should
be "hit" by the keystroke CTRL F2.

SLEEP allows you to put the current menu to sleep, which means, set it to a button. This
item should be "hit" by the keystroke CTRL F1.

A window is usually divided into sub-windows. There are information sub-windows, which
are used for titles, general information etc.. There are menu sub-windows, which are used for
collections of similar items under the control of the Window Manager level. And there are
application sub-windows which are only used by the application code. An application sub-
window has a similar structure to a menu sub-window, but omits part of the standard
definition.

It is not necessary for menu items to be within a menu sub-window, they can be put
anywhere within the window. This type of item is termed a loose menu item.

Sub-Windows

The function of the menu and application sub-windows is defined by the application itself
(hence the name). Frequently they will be used to display large amounts of information,
facilities being provided to scroll, pan or fold this information if there is not enough room for
all the items or information within the sub-window.

The menu items for scrolling, panning and folding a sub-window are part of the definition
of a sub-window, and should appear whenever the sub-window is too small to display all the
information.

There may be a "scroll bar" to the right of a scrollable sub-window. This scroll bar is a
map showing the portion of the sub-window contents which is actually visible within the
vertical range of the sub-window contents. "Hitting" the scroll bar will scroll the sub-window to
the hit position. Within the sub-window there may be arrow bars to allow the sub-window to
be scrolled a row or a page at a time.

Similarly there may be a "pan bar" below a pannable sub-window. Panning and scrolling
may also be invoked by ALT arrow and SHIFT ALT arrow keystrokes.

Folding a sub-window is accomplished by splitting the sub-window and independently
scrolling or panning part of the sub-window. In order to keep track of which parts of a folded
sub-window are visible. Initially it was foreseen that there may be an index row above the
sub-window or an index column to the left of the sub-window (or both), but this is not
implemented in current versions of the pointer Environment. Splitting or joining the parts of
the sub-window is accomplished by a "do" keystroke on the scroll or pan bar to the right of or
below the sub-window.

QPTR The Pointer Environment 17

Objects, Items etc.

An object is something represented on the display. An object may be text, a sprite, a
pattern or a blob. Text is just readable characters. A sprite is a picture of something, on a
transparent background: a sprite is the only type of object which may be used as both a
pointer and a menu item. A pattern is a (repeating) pattern of colours, but has no limits and
so no shape. A blob defines a shape, but has no colour or pattern. Combining a blob with a
pattern produces a visible object.

An item is part of a menu. Initially it was foreseen that an item might consist of more than
one object : all the objects comprising an item would be linked together, and so "hitting" one
object within an item would select all the objects. In that case, to simplify the code and to
make execution as fast as possible, all the objects within one item should have been
contiguous within the object list. However, in current versions of the Pointer Environment, an
item may have only one single object.

There are three main states for a menu item: unavailable (cannot be selected), available
and selected. In addition, an available or selected item may be the current item (the item that
the pointer points to) or not. The current item is indicated by a border around it, and the three
main states are indicated by various colour attributes, blobs or patterns.

Window Definition

When a window is pulled down, or redrawn, the window definition provides all the
information required to draw the window, its border, the menu items in the window, the sub-
windows and their borders and the menu items within the sub-windows. After a window is
pulled down, the menu definition provides all the information to process hits. Unfortunately,
because a window may be moved and have its size and shape altered, much of the
information will tend to be variable. The basic window definition is treated as invariant, as this
will usually be either in ROM or in program RAM. On setting up a window, a variable RAM
based "working definition" will be created. The table overleaf shows the structure of a window
definition: it is described in more detail in the Data Structures section of the Assembler
chapter.

QPTR The Pointer Environment 18

Window definition
window size
window origin
window attributes
window pointer sprite
window help pointer
loose menu item attributes

loose menu object list
object hit area
object justification rules
object type (text, sprite, pattern, blob)
object selection keystroke
object pointer item number
action routine pointer

information sub-window list
information sub-window size
information sub-window origin
information sub-window attributes
information object list

object size
object origin
object type (text, sprite, pattern, blob)
object attributes
object pointer

application sub-window list
menu / application sub-window size
menu / application sub-window origin
menu / application sub-window attributes
pointer sprite pointer
setup routine pointer
draw routine pointer
hit routine pointer
control routine pointer
maximum number of control sections
sub-window selection keystroke

sub-window control definitions
control block pointer
index size/spacing (indexes are not implemented)
index item attributes
control item attributes

menu item attributes
number of columns and rows
offsets to start of columns/rows
object spacing lists

object spacing
object hit area

row list
start object pointer
end object pointer

object lists
object justification rules
object type (text, sprite, pattern, blob)
selection keystroke
object pointer
item number
action routine

QPTR The Pointer Environment 19

Event Vector
The event vector is a record of all the events which have occurred since a call was made.

There are several levels to the complete Pointer Environment. On entry to each level, its
events in the vector are cleared: on return through a level, the events which have occurred
within that level are added to the vector.

The vector is a long word, each major level has 8 bits reserved for its own events

Pointer level bit 0 key click
bit 1 key down
bit 2 key up
bit 3 pointer moved
bit 4 pointer out of window
bit 5 pointer in window
bit 6 pointer has hit edge of screen
bit 7

Sub-window level bit 8 sub-window split
bit 9 sub-window join
bit 10 sub-window pan
bit 11 sub-window scroll
bit 12
bit 13
bit 14
bit 15

Window level bit 16 do
bit 17 cancel
bit 18 help
bit 19 move window
bit 20 change size
bit 21 sleep
bit 22 wake
bit 23

Job level bit 24 job event 1 to ...
bit 31 … job event 8

QPTR The Pointer Environment 20

Move Modes

When a MOVE is generated (see above), this normally means that the user wants to
move the window about the screen. As of version 2.01 of WMAN new ways of moving a
window about the screen have been added and expanded in version 2.06.

There are now four ways for a window be moved:

1. the old way: the pointer changes to the "move window" sprite which is moved about
the screen.

2. "Outline move": click on the move icon with the MOUSE - KEEP HOLDING THE
BUTTON DOWN, an outline of the window appears which you can move around and
position where you want it. Release the mouse button and the window positions itself
correctly. Please note that you cannot use this move mode with anything but the
mouse – the keyboard (cursor keys) will not work.

3. "Full window move". This is the same as 1 above, but instead of an outline, the entire
window is moved. For Q40/Q60 users, switching on the Cache is advisable... Please
note that you cannot use this move mode with anything but the mouse – the
keyboard (cursor keys) will not work.

4. "Full window move with transparency" (implemented in WMAN 2.06). This is the
same as 2 above, but the window to be moved is made "transparent" : one can "see
through" it. This is done via "alpha blending". Alpha blending requires A LOT of
computing power. So, even if your machine can theoretically handle this type of
move, in practice it might not be feasible. For Q40/Q60 users, switching on the Cache
is advisable... This type of move is only implemented for display modes where alpha
blending actually makes sense, i.e. modes 16, 32 and 33. In other display modes,
such as the QL screen modes, or Atari mono modes, this will be redirected to move
mode 2. Please note that you cannot use this move mode with anything but the
mouse – the keyboard (cursor keys) will not work.

The move modes are configured on a system-wide basis - you cannot have one job

moving in mode 0 and the other in mode 1. Thus, all jobs are affected by the move mode,
even those written a long time ago (unless, such as Qlib, the job doesn't use the WMAN
move routine).

The move mode can be changed in two ways:

1 – Configure WMAN to a mode of your liking with the standard Config program
2 - Use the new WM_MOVEMODE keyword

WM_MOVEMODE move_mode

This takes one parameter, an integer from 0 to 3:
0 : the old way
1 : the "outline" move
2 : the "full window" move
3 : the "full window with transparency" move

QPTR The Pointer Environment 21

For the full window with transparency" move, configuring/setting the degree of
transparency is achieved with either the usual config program or with the WM_MOVEALPHA
keyword with which you can set how transparent the window is supposed to be when being
moved : from nearly totally transparent to totally opaque. This is done by setting the "alpha
value", from 1 (nearly transparent) to 255 (totally opaque).

The alpha value is configured on a system-wide basis - you cannot have one job moving
with an alpha value of 100 and the other with 200. Thus, all jobs are affected by this, even
those written a long time ago (unless, such as Qlib, the job doesn't use the WMAN move
routine).

WM_MOVEALPHA amount

 this new keyword defines the amount of transparency the window should have when
moved about, from 1 (nearly transparent) to 255 (totally opaque).

Please note that
• a value of 255 is actually equivalent to move mode 2.
• a value of 0 is allowed but, since this would make the window to be moved totally

transparent when it is moved (i.e. you would only ever see the background) this is
considered to be an error and a value of 255 will be used!

• no other check is made on the value passed to this keyword, but only the lower byte
is used.

• alpha blending requires a lot of computing power - it may be too slow on your
machine.

QPTR The Pointer Environment 22

What you get
The following two files are used to add the Pointer Toolkit facilities to the QL when you

start it. You will probably wish to merge the BOOT file with your existing BOOT to include
other extensions.

BOOT
BOOT_REXT contains PTR_GEN, WMAN, QPTR and STK2

Qram owners wishing to re-create their BOOT_REXT to include the Pointer Toolkit and
upgraded Pointer Interface and Window Manager should include these files in this order. The
PTR_GEN version of the Pointer Interface supports the QJUMP Internal Mouse Interface, the
Thor and Atari ST keyboard and mouse interfaces, and the Sandy SuperQBoard with mouse
interface. If for some reason you have both the SuperQBoard and QIMI then the QIMI is used.
SuperQBoard owners should omit the POINTER command from their BOOT file, as PTR_GEN
replaces and upgrades the built-in version of the Pointer Interface. If you have SuperToolkit II
then you can omit STK2. Remember that, for SMSQ/E there is no need to load any of the pointer
Environment, this is already included.

PTR_GEN Pointer Interface, general version
WMAN Window Manager
QPTR S*BASIC Pointer Toolkit
STK2 cut-down version of SuperToolkit II

The following three files are S*BASIC demonstrations of the Pointer Toolkit.

DEMO_BAS S*BASIC version of the demo
PAINT_BAS painting program, uses the Window Manager
PAINT compiled version of the above
EDSPR_BAS sprite designing program, does not use the Window Manager

The following files contain the assembler sources for a machine-code version of the
above DEMO_BAS program, suitable for assembling and linking using the GST Macro
Assembler. The last four are: two files of keys required, the linker command file to link with,
and a ready-assembled and linked version of the program.

DEMO_ACTION_ASM
DEMO_DRAW_ASM
DEMO_INIT_ASM
DEMO_MLYOT_ASM
DEMO_MMAIN_ASM
DEMO_SETUP_ASM
DEMO_SPRITE_ASM
DEMO_TEXT_ASM
DEMO_WMAN_ASM
DEMO_KEYS
DEMO_SMS
DEMO_LINK
DEMO_BIN

action and hit routines window
drawing routine
initialisation and termination
menu layout
main menu definition
menu setup routine
sprites used in the demo
text used in the demo
action routines that call the Window Manager
keys for the above files
SMS2 keys used in the above files
linker command file
assembled version of the demo

QPTR The Pointer Environment 23

The following files may be INCLUDEd in your own assembler files to define suitable
symbols for the manipulation of the data structures in the Pointer Environment.

KEYS_WMAN
KEYS_WDEF
KEYS_WSTATUS
KEYS_WWORK
KEYS_MENU_MAC
KEYS_TEXT_MAC
KEYS_QDOS_IO
KEYS_QDOS_PT
KEYS_CON
KEYS_COLOUR
KEYS_K

keys for vectors etc.
window definition structure
window status area structure
working definition structure
menu generating macros
text string generating macros
keys used to access the Pointer Interface
external keys for the Pointer Interface
internal keys for the Pointer Interface
some useful colours
symbolic names for keystrokes

Please note that these key files, up to date, can be found in the SMSQ/E sources
(dev8_keys_ directory). Do not use the original QPTR ones, they may be outdated.

Two utility programs are provided to modify screen images and compiled S*BASIC
programs. There is also a procedure to restore the ROM definitions of S*BASIC procedures
and functions. These are documented in the Utilities chapter.

CVSCR convert screen utility
STKINC stack increase utility

FIXPF S*BASIC "ROM restore" utility

CONFIG - the standard configuration program - is explained in its own manual.

QPTR The Pointer Environment 24

The Demonstration Programs
Four demonstrations are included with the Pointer Toolkit. The S*BASIC ones will all run

on a QL as set up by the BOOT file supplied. When you get to the stage of reconstructing
your own BOOT file to add QPTR to it, you should note that the demos use SuperToolkit II
routines, as included in the STK2 file. In addition, it is vital that S*BASIC is flagged as
"managed" - lines 110 to 160 of the BOOT file supplied contain the magic to do this, and may
usefully be copied into your own BOOT file.

Two of the demonstrations are of no practical use, but serve to compare and contrast the
way in which the facilities of the Pointer Environment are used from S*BASIC and machine
code. These are the files starting with the DEMO_ prefix.

The S*BASIC program EDSPR demonstrates that it is possible to write pointer-driven
programs without using the Window Manager parts of the Pointer Toolkit: you should also
find it of use when designing sprites for use in machine code programs.

The S*BASIC program PAINT demonstrates one or two areas of the Window Manager
interface not used in the DEMO_ files, such as partial window operations and the graphics
object drawing operations.

Both EDSPR and PAINT have been successfully compiled and run, using the
Q_Liberator compiler: a compiled version of PAINT is supplied. If you re-compile PAINT, you
may need to process the result with the STKINC utility to run it, as it uses the Window
Manager. EDSPR may be compiled and run as is, because it does not use the Window
Manager. See the Utilities chapter for more details.

The DEMO_ programs

The DEMO_ programs come in two versions: the version ending in _BAS is S*BASIC,
and may be LOADed and RUN in the normal way: the version ending in _BIN is machine
code, and may be EXECuted from the S*BASIC command line or the FILES menu of Qram.

General layout

Programs using the Window Manager go through a number of similar stages in their
execution. They start by using the pointer information TRAP IOP.PINF to find the Window
Manager vector. This may fail due to the absence of either the Pointer Interface or the
Window Manager, it which case the program will probably have to give up. S*BASIC
programs find the Window Manager vector every time a Pointer Toolkit routine which
requires it is used.

The next stage is to combine the static definition of the initial window with any dynamic
information that may be required. The static definition is normally contained within the
program itself, either in S*BASIC DATA statements or in a Window Definition generated by
the assembler using the macros provided or DC.x directives. The dynamic information may
be generated before, during or after the conversion of the static definition to a "working
definition", or any convenient combination of the three. For instance, the assembler version
of the demo has a zero pointer to the "You have used the BEEP..." information in its static
definition, and generates the complete string and resets the pointer in the working definition
once the working definition has been mostly set up by the WM.SETUP routine.

QPTR The Pointer Environment 25

Once a working definition has been generated, the window may be positioned and drawn
- this is one operation in S*BASIC, and two in machine code. User-defined code may be
supplied to draw some non-standard parts of the window, for instance the musical staff in the
demo program.

Now that the window is visible, input may be invited and acted upon. In machine code,
the Window Manager can be made to do some of the hard work of deciding what the input
consisted of and calling an appropriate action routine. In S*BASIC this selection of an action
routine has to be done by the S*BASIC program itself.

The S*BASIC version splits into three major units. Lines 1000 to 9999 contain the "action"
part of the program, which sets up the data structures and changes them in response to user
input. Lines 10000 to 19999 contain the "initialisation" part of the program, and also the data
used to describe the window layout. Lines 20000 onwards contain "setup" routines usable in
any S*BASIC programs to set up window definitions.

The window you see is defined by the contents of the DATA statements in lines 12000 to
19999. It has four "loose menu items", defined in lines 12620 to 12720. It has two
"information sub-windows", defined in lines 12840 to 12960: these contain two and one
"information items" respectively, defined in lines 12730 to 12830. There are two "application
sub-windows": the one defined in lines 13550 to 13590 has a short definition, implying that
anything happening in that window needs to be dealt with by S*BASIC. The second
application sub-window is also a menu sub-window: the items it contains are defined in lines
12970 to 13140, their "spacing lists" in the X and Y directions in lines 13150 to 13320, and
the "row list" splitting the linear item list into rows in 13330 to 13420. The "control definition"
is set up in lines 13430 to 13500: this gives the two independently-scrollable sections. Three
sprites are defined in lines 12200 to 12610: the first two are used as pointers, the last in the
"move window" loose menu item. One set of standard colours and window attributes are
used for all items and windows: these are defined in lines 12110 to 12190 and 12040 to
12100 respectively.

The definitions mentioned above are initialised by the setup functions and procedures at
the end of the program. These expect DATA statements of the appropriate form, which are
READ into arrays and the data structures set up by calling the corresponding MK_xxx
function which is provided by the Pointer Toolkit. The result of this is passed back and may
be used in subsequent DATA expressions: for instance, the main application window table,
defined in lines 13520 to 13670, is then referred to in line 13740 by a DATA statement
defining the contents of the window. The variable used here is main_awt: similarly the other
variables main_sprite, main_lot and main_iwt have been defined earlier and are now referred
to when setting up the main definition. The necessity to do this results in the "bottom-up"
sequence of window definition in S*BASIC, as opposed to the "top-down" sequence possible
in assembly code, and which is probably more readable.

Once set up, the "action" part of the program then uses the Pointer Toolkit procedure
DR_PULD to draw the window, and waits for user input by using the RD_PTR procedure.
The result of the input is then acted upon. If the input occurred in the first application sub-
window, then a note of the appropriate pitch and duration is played: clearly, any action could
be taken here, depending on the application, so such sub-windows are very flexible but
require more effort on the part of the programmer. The second sub-window, being a menu
sub-window, is taken care of entirely by the Window Manager. Finally a hit on a loose menu
item produces a returned sub-window number (swnum%) of -1, and radically different effects
depending on which item is hit. Quit is quite simple, and just stops the program after
discarding the window contents with a call to DR_UNST: ALL copies its resulting state to all
items of the menu sub-window, and re-draws that sub-window: BEEP makes a simple beep,
and changes and re-draws an information sub-window: and the move window item uses the
supplied routine to move the window, and then resets its own state to available. The SELect

QPTR The Pointer Environment 26

ON construction here is peculiar to the S*BASIC interface to the Window Manager. In the
machine code version each item has its own "action routine" which is called as a result of the
Window Manager having done its own equivalent of the SELect ON.

The machine code version in DEMO_BIN is made up of all the _ASM files, assembled
and linked together as specified by the _LINK file. MENU_ASM and SPRITE_ASM define the
data structures, INIT_ASM and SETUP_ASM convert them into a "working definition",
DRAW_ASM provides a routine for drawing the staves in the first application sub-window,
and ACTION_ASM provides all the routines used to act on user input. The principal
difference in operation between this demonstration and the one written in S*BASIC is that all
actions are called directly from the Window Manager: the only action resulting from the initial
call to WM.RPTR returning is after Quit has been hit to kill the job off.

The status area for the window is set up in the job's data area, which is pointed to by A6.
A small amount of space is left below this to keep information which does not belong in the
window's status area, such as the Window Manager vector. Note the use of dummy
COMMON blocks to allocate the correct amount of space for the status area, the menu
status block, the section control block and the variable information item. This method of
making the Linker do all the hard work does take extra time when re-assembling and linking
the program, but saves more by removing the need to check every file manually when a
small change is made.

The EDSPR program

This simple program may be used to design sprites, blobs and patterns for use in other
programs. It produces output that can be assembled directly to produce sprite definitions, or
edited to produce blobs or patterns. You will also need to edit the output for use in S*BASIC
programs. To convert a sprite to a blob, you should remove the pattern and set the relative
pointer to it to zero. Sprites to be used as patterns must be a multiple of 16 pixels wide, but
require no modification. To generate a graphics object that is valid in more than one mode,
separate definitions for each mode should be linked together by altering the relative pointer
from its default zero value.

You are provided with a 5x5 initial grid, with each block representing one pixel of the
sprite to be designed. The grid may be expanded and contracted in both directions by using
the ADD and DELete ROW and COLumn items found in the Functions menu: the pointer
sprite will change to show which function is currently active. Pixels may be set to any colour
or transparent (black and white stipple) by selecting the required colour from the palette to
the left of the main editing grid. The area above the palette signals the currently selected
colour, and also acts as a "test area" so that you can see what the sprite you are designing
looks like actual size and on varying backgrounds.

The Functions menu also allows you to set the origin of the sprite and to change display
modes. After using either of these options, or selecting SET PIXel mode, or changing the
colour to be used, the program is in SET PIXel mode and the pointer is the default arrow.

The Files menu gives you the options of saving or loading sprites designed with EDSPR:
the filename is made up of the program default plus the given name plus the _ASM
extension. The file format is suitable for assembling with the GST Macro Assembler, and
also includes a human-readable copy of the definition: this is what is used when loading a
sprite design.

QPTR The Pointer Environment 27

The PAINT program

This program demonstrates pull-down windows, menus of sprites, patterns and blobs,
and the various graphics object-drawing routines. It was developed progressively as a test-
bed for the Pointer Toolkit, and is thus of fairly modular construction but of only moderate
readability! To document it fully would double the size of this manual, so we suggest that you
make a listing, and experiment with the program.

The area that you can work on defaults to a size of 640x640 pixels: you can move about
this area as required, using the MOVE option from the Tools menu. If you convert an existing
512x256 screen image using the CVSCR utility supplied, and load this, you will not be able
to move as far.

The Files menu allows you to save or load all the picture, or just the paste buffer: if you
hit the filename then you can enter a different name to be used for the save or load
operation. The selected operation will take place when you hit the OK item or do a "do"
keystroke.

While drawing, a "hit" will usually start drawing whatever object has been selected in the
Tools menu. Further "hits" will draw a line or flip between changing an ellipse's aspect ratio
and its size/ inclination. A "do" will draw the object at its currently shown position, and an
ESCape will abandon the current object. While in "doodle" mode, a "hit" will drop a blob or
sprite, and a "do" will draw a line of blobs (but not sprites) from the last blob dropped to the
current pointer position.

The spray option allows densities of between 5% and 95% when spraying patterns: note
that with a combination of a small brush (blob) and a low density you may find that no pixels
are sprayed.

Cut and paste work on rectangular areas smaller than the drawing area. If you wish to
import an existing screen into the PAINT program, some work is necessary, as a whole
512x256 screen is too big to paste into the drawing area. The recommended method is as
follows:

a) convert the screen image using the CVSCR utility
b) within PAINT, LOAD the converted image (ALL the picture, not the paste BUFFER)
c) use CUT and SAVE BUFFER to carve out the chunks you want from the screen

image
d) re-start PAINT, or load a bigger picture to get back to a large picture area
e) use LOAD BUFFER and PASTE to put the chunks of the screen image where you

want them

The Brush menu allows you to select various sizes and shapes of brush, which are
combined with the selected paint when spraying or doodling. There are also two sprites (a
flower and an apple) which are used directly, and not combined with the current paint. You
may either hit the required brush and then the OK item, or "do" the required brush to select it.

The Paint menu provides access to various patterns with which to draw, and is used in a
similar way to the Brush menu. The patterns at the top of the menu are all the possible
checker-board combinations of the colours available in the current mode, and may be used
to draw objects of any sort. Lower down you will find various special patterns which can only
be used when in the doodling and spraying modes: these become unavailable if the line,
ellipse or block modes are selected. The first four or eight of these special patterns are
stipples of the basic colours with "transparent" ink, which allow you to blacken, whiten,
redden etc. parts of your drawing. There are also red gingham and brickwork patterns, two
sizes of latticework with transparent holes in, and a green and transparent grass pattern.

QPTR The Pointer Environment 28

he "Buffer" paint converts the contents of the paste buffer into paint, which may be used
for doodling or spraying. The area saved in the paste buffer must be at least 16 pixels wide,
this being the minimum allowable width for a pattern. When you select this option, the Paint
menu is thrown away and you must position the pattern to line it up with the existing picture
as required - this is similar to the "paste" option in the Tools menu. In this case, however, the
buffer is only pasted in temporarily, and it is truncated in the horizontal direction, so that the
width is a multiple of 16 pixels.

QPTR The Pointer Environment 29

Concepts

This chapter is intended as a reference guide to the new concepts introduced by the
Pointer Environment, as well as some old ones that have acquired a new significance within
the Pointer Environment. Any terms used in the description of a concept that themselves
have a description in this section are shown in Courier thus.

Action routine

Any item, be it a loose menu item or member of a menu sub-window, may be
provided with an action routine. This will be called from within the Window Manager
whenever a "hit" or "do" keystroke is made and the item is the current item and the item is
not unavailable.

Within the Pointer Toolkit only pre-defined action routines are used, as it is not possible to
call S*BASIC routines from machine code.

Application object list

The objects in a menu sub-window are grouped into one or more application object
lists (in S*BASIC, one list only). The list is arranged into rows by the sub-window's row
list.

An application object list defined from S*BASIC also contains, at the start, the set of
item attributes which are to be used with the objects defined in the list.

Application spacing list

The objects in a menu sub-window are arranged in a regular array of rows and
columns: however, these rows and columns need not all be of the same height or width. A
pair of spacing lists is required, one for the rows and one for the columns: there must be as
many entries in the row spacing list as there are rows, and similarly for the columns. An entry
in a spacing list defines (a) the size of the object itself, and (b) the spacing between the start
of this object and the next: this should obviously be greater than the size of the object! If a
row, say, consists of a number of objects of various heights, then the corresponding entry in
the row spacing list should allow just enough space for the highest object.

Application sub-window

An application sub-window is an area of an application's window used for a particular
purpose, for instance the drawing area in a drawing program or a file list in a file copying
utility. Since the uses of such an area are very variable, the Window Manager requires the
application program to provide routines to draw, read the pointer in, and modify such a sub-
window.

A special case of an application sub-window is a menu sub-window, which can use
some special routines provided by the Window Manager.

QPTR The Pointer Environment 30

Application sub-window list

The application sub-window definitions used in any window will all take up different
amounts of memory, depending on their complexity. It is therefore impossible to arrange
them into a list in the same way as, say, loose menu items, which are all the same size.
An application sub-window list of regular-sized entries is therefore used, which consists of a
set of pointers to the sub-window definitions, followed by a pointer with a "silly" value (zero,
in fact) which marks the end of the list.

Background I/O

In earlier versions of the Pointer Environment, most attempts to print to, or draw in, a
locked window would result in the application being suspended until the window became
unlocked and the I/O operation could continue. More modern versions of the Pointer
Environment can be configured to do such operations in the background, so that the visible
parts of the window keep being updated, and thus the I/O operations can continue even if the
window is locked. Operations which can be done in the background are printing to the
channel, drawing (lines etc), drawing sprites, changing paper, ink etc. However, operations
that imply modifying the window itself (changing size or position) will be suspended until the
window becomes unlocked.

Blob

A blob is a set of data somewhere in memory defining the shape of a graphics item, say a
circle. Given a set of suitably defined patterns, one could use such a blob to draw red,
green, white, brickwork, gingham etc. circles.

Bottom window

The bottom window is special, in that it is the window that will become top of the pile
when "CTRL C" is pressed.

Control definition

A menu sub-window which is (or may be) divided into one or more sections
requires a control definition to tell the Window Manager where each section starts in the
sub-window, which is the first visible row or column in the section, and how many visible
rows or columns there are in the section. This control definition will be modified by the sub-
window's control routine as the user scrolls, pans, splits or joins the sections.

Control routine

When the pointer is within an application sub-window the action to be taken when
a pan/scroll bar or index item is "hit" depends on the application itself. Therefore
an application must supply a control routine for each sub-window which can be called by the
Window Manager when either of those items is "hit". In the case of a menu sub-window,
the Window Manager provides a standard control routine WM.PANSC which will prove
useful in the majority of cases.

QPTR The Pointer Environment 31

When using the Pointer Toolkit, only pre-defined control routines may be used as it is not
possible to call S*BASIC routines from machine code. If a menu sub-window is defined then
the standard WM.PANSC routine is used, otherwise the RD_PTR call which entered the
Window Manager returns.

Draw routine

All application sub-windows may be supplied with a draw routine, which is called
by the Window Manager at the appropriate point when drawing the contents of a window for
the first time. In the case of a menu sub-window this draw routine will frequently be a call
to the Window Manager's own menu-drawing routine WM.MDRAW. Note that whether a
draw routine is supplied or not, the Window Manager will always draw the sub-window's
border and will clear it to the background colour, unless the "do not clear" flag is set. If a
menu sub-window has index items and/or sections then a separate routine,
WM.INDEX, must be called to draw the index items and/or pan/scroll bars etc..

When using the Pointer Toolkit, only pre-defined draw routines may be used as it is not
possible to call S*BASIC routines from the code. If the sub-window is a menu sub-window
then the WM.MDRAW routine is used, otherwise no draw routine is used. If the sub-window
has sections or index items these will also be drawn.

Hit area

A window's hit area covers the same area as the outline, but excluding the shadow. If
a special pointer is defined for use within a window, it will appear only when the pointer is
within the hit area of that window, and the window is unlocked.

Hit routine

When the pointer is within an application sub-window the action to be taken when
the pointer is moved or a key is pressed depends on the application itself. Therefore an
application must supply a hit routine for each sub-window which can be called by the
Window Manager when either of the above events takes place. In the case of a menu
sub-window, the Window Manager provides a standard hit routine WM.MHIT which will
prove useful in the majority of cases.

When using the Pointer Toolkit, only pre-defined hit routines may be used as it is not
possible to call S*BASIC routines from machine code. If a menu sub-window is defined then
the standard WM.MHIT routine is used, otherwise the RD_PTR call which entered the
Window Manager returns.

Index items

It was initially foreseen that a menu sub-window might have index items at the top
and/or left-hand edge to show what is in a given column or row: for instance a spreadsheet
might use the index items to show the row numbers and column letters. An index item list
would be of the same form as an application object list. This facility was, however,
never implemented so index items don't exist.

QPTR The Pointer Environment 32

Information object list

An information object list defines the size, position, type and so on of each object that
appears in an information sub-window. As with a loose item list, it is terminated
with a special value: unlike loose objects, however, information items are fairly static and do
not require item numbers or action routines.

Information sub-window list

The information that appears in a window may usefully be grouped into a number of
information sub-windows, each with its own window attributes and information
object list. These sub-windows are defined in a list of regularly spaced entries,
terminated by a special value, called an information sub-window list.

Initial position

When a window is positioned by the Window Manager, the pointer will always appear at
the position specified by the window origin in the window definition. When the call is
made to the Window Manager to position the window, the application may specify how the
pointer is to be moved to achieve this: an initial pointer position of (-1,-1) requests that the
pointer be moved as little as possible, and a positive pair of co-ordinates requests that the
pointer be moved as near as possible to that absolute position. The existing or given
position may have to be modified if the window would fall outside the screen or its primary
with the pointer at this position: this modification will be as small as possible.

Item

An item consists of one or more objects, all of which are in the same window or menu
sub-window, and have the same item number. A "hit" on any one of the objects
comprising a given item will cause all the objects in that item to be re-drawn with the new
status. Note that loose menu items can have only one object.

Item attributes

An item, whether it is a loose menu item or contained in a menu sub-window, may
have one of three statuses. When the item's status changes it will be re-drawn using a
different set of item attributes, depending on its new status. For each of the three possible
statuses, there are four attributes that may change: the background colour, on which the
object is drawn: the text colour, used if there is any text in the item: the blob shape, used if
part of the item is a pattern: and the pattern, used if part of the item is a blob. Thus
selecting a pattern from a menu might change its blob from a circle to a tick, and change its
background from white to green.

Item number

In each loose or application object list, the objects are given item numbers.
These item numbers associate one or more objects with each flag in the status block, so
that a "hit" on one object may affect the appearance of more than one object, but will only
directly change the status of one item.

QPTR The Pointer Environment 33

Note that the Pointer Toolkit restricts you to one object per item, as item numbers are
assigned automatically by the various MK_ routines.

Moreover, the basic routines return the item number to show which loose item was
hit/done. If you give several loose items the same item number, you will not be able to
distinguish which item was really hit/done.

Job event

Jobs that read the pointer may communicate with each other over job events, by sending
themselves events and receiving them. There are 8 events, bitmapped into the job byte of
the event vector. Note this facility may not be present on systems other than those running
SMSQ/E.

Locked window

A window is locked while there is another primary window which (a) is above it in the
pile, and (b) overlaps it. In older versions of the Pointer Environment, most attempts to
output to or input from a locked window will wait until the call times out or the window
becomes unlocked: the exception is a pointer read (RPTR) with both bits 4 and 5 (in and out
of window) set, which always returns immediately.

More modern versions of the Pointer Environment have the possibility to do background
I/O on (partially or totally) buried (and thus locked) windows, so that, for example, printing
to or drawing in a locked window may actually succeed in the background and the partially
visible part of the window will be shown to be updated.

Loose menu item

It is frequently useful to have, within a window, a set of menu items that are permanently
visible without having to pull down a sub-menu or pan/scroll menu sub-window. Such
items are often positioned in an irregular manner, as opposed to the regular row and column
array of a menu sub-window. This need is catered for in the Window Manager by having a
set of "loose" menu items which each have their own position and size, as well as the usual
type, action routine etc.

Loose item list

All the loose menu items in a window are defined in one loose item list, containing
data on their size, position, type and so on. The end of the list is marked by an entry of a
special value which cannot occur anywhere else (=-1) : experience shows that omitting this
is a frequent cause of "mysterious" problems!

A loose item list defined from S*BASIC also includes the set of item attributes to be
used with the objects defined in the list.

QPTR The Pointer Environment 34

Managed window

A window is said to be managed if its outline has been set by a call to OUTLN. Only if
a window and its primary are managed will you be able to use it for pointer input or make
use of sub-windows: there are also differences when size checking on an OUTLN or
WINDOW call, and closing the window.

The BOOT program as supplied on the QPTR master medium sets S*BASIC's outline:
lines 110 to 160 must be copied to your own BOOT program if the Pointer Toolkit is to work
correctly.

Menu sub-window

A menu sub-window is a special case of an application sub-window, consisting of
objects arranged in a regular array of rows and columns. Similar or related objects will
frequently be grouped together, for instance filenames in one column, file lengths in the next.
De-pending on the application single or multiple objects may be selected, and
pan/scroll bars may be required to allow the user to view all the objects in the menu.
The objects are defined in one or more application object lists, grouped into rows
by the row list, with spacings between objects defined by spacing lists.

Outline

All windows, primary or secondary, have an outline. The primary window's outline is
either set by an explicit call to OUTLN, or is maintained by the Pointer Interface to be just big
enough to enclose the primary and all its secondaries: the first case is that of a managed
window, the second is said to be unmanaged.

If the outline of a primary has been set, making it managed, you will get an "out of range"
error if you try to set any of its secondaries outside it, either with WINDOW or with OUTLN. If
you reduce the primary's outline with a further call to OUTLN, any secondaries whose area
would then fall outside the new outline are reset so that their outline, hit and active areas are
all the same as the primary's new hit area (i.e. as big as possible). Since their size has
(probably) changed, any save area they may have is discarded.

Pan/Scroll bars

A menu sub-window may not be big enough to show all the objects in the menu: in
this case the sub-window will usually provide pan and/or scroll bars to allow the user to move
sideways or up and down through the objects respectively.

Pattern

A pattern is a set of data somewhere in memory that defines the colours with which a
graphics item may be drawn: for instance, a brickwork pattern would consist of red blocks
with white lines between them. Using suitable blobs, one could draw brickwork-coloured
squares, triangles, circles, crescents and so on.

QPTR The Pointer Environment 35

Pick

A window is said to be picked to the top of the pile if an action by the user or a
program causes it to be transferred to the top. This transfer consists of a number of internal
re-arrangements which you aren't very interested in (honest!), saving any primary that's
about to be overlapped, restoring the contents of the picked window to the screen, and
unlocking it. You can pick a window either from a program, using PICK, or by pointing to a
visible bit of it with the pointer and hitting a key or mouse button, or typing "CTRL C". The
last of these always picks the bottom window, the former two pick a specified window.

Pile

The set of primary windows present at any time may be thought of as resembling a
pile of overlapping sheets of paper on a desk (the screen). There is a slight difference, in that
two windows that do not overlap are always at different levels in the pile, even if they appear
to be at the same level. A typical pile, viewed from the side (not possible!) might look like
this:

_____ <- top window
 _____ <- unlocked, but not top

____ <- locked
_______ <- bottom window, also locked

Pointer

If the mouse (if any) is moved or a read pointer call is made, a pointer of some sort will
appear on the screen: this may take various forms depending on the state of the window to
which it points.

Pointer Environment

The combination of the Pointer Interface and the Window Manager forms the
complete Pointer Environment with both high and low level access for the programmer.

Pointer Interface

The Pointer Interface provides an extended and modified console driver, and forms the
lower level of the Pointer Environment. For the programmer it provides some extra
TRAP #3s (D0=$6B to $7F) to allow applications to read the pointer and so on.

Primary window

Any job running in the QL may have a number of windows open at any one time: one of
these, usually the first one used for I/O not the first one opened) is designated the job's
primary window. This window's outline defines the area restored when the job is picked
to the top of the pile. If the outline of a primary is explicitly set by OUTLN then the window
becomes managed, and size checking is performed in a slightly different way. If the
outline is not explicitly set, then the primary is unmanaged, and the outline can be
"stretched" by opening new secondaries or moving existing ones.

QPTR The Pointer Environment 36

Scan order

While the pointer is visible, the Pointer Interface keeps track of which window contains it
by scanning the pile. It is worth knowing how this is done, so that you know why the pointer
is that boring little arrow and not the super-duper sprite you just designed! More seriously, if
the sprite isn't what you expect then it's probably because the window you're using to read
the pointer is unmanaged, or because its primary is unmanaged. Here is a description of
how the Pointer Interface decides which window contains the pointer, and thus which sprite
to display.

FOR all primaries in current display mode, from top down
IF pointer in this primary

IF primary is managed
FOR all its secondaries, in reverse order of use

IF this secondary is managed
IF in this secondary

SET channel ID to secondary
SET no sub-window
SET secondary's pointer sprite
FOR all sub-windows of secondary

IF in sub-window
SET pointer sprite
SET sub-window number EXIT sub-window

END IF
END FOR sub-window
EXIT to CHECK_POINTER_SPRITE

END IF
END IF

END FOR secondaries
SET channel ID to primary
SET no sub-window
SET primary's pointer sprite
FOR all sub-windows of primary

IF in sub-window
SET pointer sprite
SET sub-window number EXIT sub-window

END IF
END FOR sub-window
EXIT to CHECK_POINTER_SPRITE

ELSE
FOR primary and all second., in reverse order of use

IF in active area
SET channel ID
SET default sprite
SET no sub-window
EXIT to CHECK_POINTER_SPRITE

END IF
END FOR all windows
SET no channel ID (-1)
SET no sprite
SET no sub-window
EXIT to CHECK_POINTER_SPRITE

END IF
END IF

END FOR primaries
FOR all primaries in other mode

IF in primary
SET channel ID
EXIT to CHECK_POINTER_SPRITE

END IF
END FOR primaries
SET in no window

(continued overleaf)

QPTR The Pointer Environment 37

CHECK_POINTER_SPRITE:
IF whole screen locked

SET pointer sprite to "locked"
ELSE

IF window size/move/query
SET pointer sprite to "size/move/query"

ELSE
IF channel in other mode

SET pointer sprite to "other mode"
ELSE

IF channel busy or doing keyboard read
SET "busy" or "keyboard"

END IF
END IF

END IF
END IF

FOR all versions of the pointer sprite
IF this version is OK in this mode

EXIT to SET_POINTER_RECORD
END IF

END FOR versions
SET pointer sprite to "arrow"

SET_POINTER_RECORD:
fill in pointer, channel ID, relative co-ordinates, sub-window number, window definition
clear event vector and keystroke/keypress

Secondary window

A job may have more than one window open at once: the first used of these will be
designated the primary window, all the rest will be secondaries. When a secondary's
outline is set, that area of the screen is saved, so that when the outline is set again it may
be restored (and the new area saved).

Sections

When a menu sub-window is too small to show all its objects at once, it may be
found convenient to split the sub-window into one or more sections which can be
pan/scrolled through the data: for instance, one would require two sections to look at the
top and bottom of a spreadsheet simultaneously. The actions of panning, scrolling, splitting
and joining the sections of a sub-window are taken care of by that sub-window's control
routine.

Selection key

The selection key for an item is the key that the user pushes on the keyboard to action an
item. For example, the normal selection key for a help item would be F1.

QPTR The Pointer Environment 38

Setup

The process of converting from a window definition to a working definition is
the setup stage. In the machine code case it is accomplished by the Window Manager
routine WM.SETUP. The S*BASIC routines DR_PPOS and DR_PULD do a similar job on
the definition set up by the MK_WDEF routine, and also call the appropriate positioning and
window drawing routines.

Setup routine

When the Window Manager sets up an application sub-window the data
structures to be generated depend on the application itself. Therefore an application may
supply a setup routine for each sub-window which can be called by the Window Manager
during the setup stage. In the case of a menu sub-window, the Window Manager provides
a standard setup routine WM.SMENU which will prove useful in the majority of cases.

When using the Pointer Toolkit, only pre-defined setup routines may be used as it is not
possible to call S*BASIC routines from machine code. If a menu sub-window is defined then
the standard WM.SMENU routine is used, otherwise no setup routine is used.

Size checking

When a WINDOW or OUTLN call is made, the size required must be checked. If the
window to be re-sized is unmanaged, then the check requires that the new size will fit on the
screen: this is also the case when an OUTLN call is made for the primary window of a job.
If the window to be resized is a managed secondary window, then it must fall within the hit
area of its primary.

Sprite

A sprite, as used by the Pointer Interface, is a set of data somewhere in memory which
defines both the shape and colour of a graphics object. Such an object may be (a) drawn
within a window, or (b) used as a pointer: the familiar arrow, padlock, K and no-entry pointers
are all sprites. This is somewhat different from the games programmer's definition of sprites,
which move around of their own accord colliding with one another in a most unsettling
manner.

Status

Any loose menu item or item in a menu sub- window has an associated status: this
may be unavailable, available, or selected. This status is shown visually by changing the
colours or shapes of the objects which comprise the item, and is recorded in a status
block for use by the application. The colours and shapes used for each status are defined
by the item attributes, each window having one set for its loose menu items (if any),
and one set for the items in each menu sub-window.

QPTR The Pointer Environment 39

Status block

A window will have a status block for its loose menu items, and one for each of its
menu sub-windows. Each item has a one-byte flag, which will take different values
depending on the item's status, at a position in the block corresponding to the item
number . In addition, the flag may have its bottom bit set to indicate to the Window
Manager that its status has changed and that the object should be re-drawn. Action
routines are usually called with a pointer to a status block and an item number, so that the
status of the item whose action routine has been called may be checked or modified.

Sub-menu

A sub-menu is very similar to an ordinary menu, but is contained in a secondary
window that has been pulled down within its primary. Depending on the application a sub-
menu might appear at a fixed point or close to the pointer. Usually sub-menus contain a set
of associated options for which there isn't room in the main menu, or which would make it too
cluttered. An example is the SORT sub-menu in QRAM.

Sub-window

Any managed window may have a list of sub-windows attached to it. When a RPTR call
has been made, the Pointer Interface will scan through the pile of windows and set the
pointer sprite to that defined for the sub-window containing the pointer (if any). If the pointer
read returns then the co-ordinates of the pointer will be relative to the sub-window, making a
programmer's life easier, we hope! The position of a sub-window is defined relative to its
window, so it does not need to be reset if the window is re-defined.

A sub-window is only of relevance when doing a pointer read, to change the pointer sprite
seen and the sub-window number and position returned: you cannot print to or clear sub-
windows. If you wish to modify the area corresponding to a sub-window, you have to set a
real window channel to that area - the Window Manager provides a routine to do this.

The Window Manager uses a sub-window for each application sub-window to determine
whether the pointer is in an application sub-window or the main body of the window.

System palette

The window manager now implements four system palettes. A system palette is a group
of pre-defined colours for (more or less) each element of a typical managed window., it is an
evolution of the “colourways” that exist in some programs. System palettes are system-wide
colours that can be used to tailor the appearance of your applications to your wishes. It is
possible to set different palettes for different programs. You can configure either SMSQ/E or
the WMAN file to set the colours you want.

QPTR The Pointer Environment 40

Timing out

It is possible to specify how long the Operating System should keep trying to do an I/O
call for before giving up and returning a "not complete" error message - this is called timing
out. Most of the Pointer Toolkit routines keep trying indefinitely, and thus never time out, but
you may find that some other programs (or programming languages) use finite timeouts, and
therefore fail to do some I/O sequences correctly if they try to do them while their windows
are locked, unless background I/O is switched on.

Top window

The top window in the pile is special in that it is always unlocked since nothing can
overlap it, and it is the only window allowed to use the keyboard for input.

Unlocked window

A primary window is said to be unlocked if there is no primary above it in the pile
which overlaps it. While a window is unlocked all attempts to output to it will succeed:
attempts to do keyboard input from it will succeed if it is the top window. If a window is not
unlocked then output will appear either when the window becomes unlocked, or not at all if
the output call times out before the window becomes unlocked.

In addition, an unlockable window is always unlocked, regardless of any overlapping
windows.

Unlockable window

A window may be made unlockable, in which case all output to it will appear instantly,
regardless of whether there is an overlapping window or not: this is done by a special version
of the PICK routine. This is what life was like before the Pointer Environment, jolly messy!

Unmanaged window

A window is said to be unmanaged if no OUTLN call has been made to set its outline :
in this case it is assumed that the job using the window is unaware of the existence of the
Pointer Interface, and thus the effect of some I/O calls is slightly changed. For instance, any
sub-windows are ignored during a pointer read. There are also some differences between
unmanaged and managed windows when they are closed.

Unset

Once a primary or pull-down window has been set up and drawn, the definition will
remain until the application removes it. The Window Manager provides a routine to do this
which does all the operations required to make it safe to modify or remove the window's
working definition. This routine is WM.UNSET.

The S*BASIC unset routine not only calls the WM.UNSET vector, but converts all the
absolute pointers in the data structures back into their relative forms.

QPTR The Pointer Environment 41

Window definition

A window definition is an embryonic form of a full working definition, which is
converted into the latter by a setup routine, frequently with the addition of some extra data:
for instance, a file-copying program might generate its own application object list
from the directory of a disc.

It may be convenient for applications written in different languages to have different
window definition formats, and to provide their own setup routines.

Window Manager

The Window Manager is a set of utility routines which assist with the maintenance of
windows, and which forms the higher level of the Pointer Environment. A number of
routines are provided which translate and interpret data structures either set up by or
contained within a program. Translation involves conversion of a window definition of
the form recognised by the Window Manager to a working definition. Interpretation
frequently takes the form of drawing or re-drawing part of a window.

Since the Window Manager is able to call various application-supplied routines, quite
complicated effects can be achieved without the programmer having to write all the "boring
bits".

Working definition

Whereas a window definition may take many forms, a working definition must
always be of the same form. The first action of any application will usually be to translate the
window definition into a working definition using its setup routines: subsequently the
Window Manager will be able to work on the data structure produced, as it will now be in a
standard form.

QPTR The Pointer Environment 42

A typical window

1) A sprite type loose menu item, centred in the space allocated to it. This is the "move
window" item, which should be present in most applications. It is "hit" by the standard key
"CTRL F4" and specially treated within the Window Manager by generating a "move
window" event.

2) Two text type loose menu items: these are also centred. The View item is specific to
the application, and is "hit" by the V key. The HELP item should be present in most
applications, and is therefore "hit" by a standard help key, F1, and specially treated within
the Window Manager by generating a "help" event.

3) A text information object, both of them text. The medium name and statistics object is
in a window of its own, so that it can be re-drawn when necessary.

4) A menu sub-window. The objects in this are centred vertically, but left-justified
horizontally. Both objects in a row, the filename and the file statistics, have the same item
number, and thus share the same state; in this example, all files are available. Sub-
windows like this do not have a separate channel of their own.

QPTR The Pointer Environment 43

5) The current item in the primary window, which is also selected.

6) The current item in the pull-down window: this has not been selected, so it still shows
in the available colours. Because this is a pull-down window, it has its own status area, so
there is no confusion between this current item and the previous one. The pointer: while this
remains within the border showing that the item is current, a "hit" will select that item. As the
pointer is moved, the Window Manager removes and replaces this border around whichever
menu item the pointer is within.

7) A pull-down window. In contrast to the sub-window, this does have its own channel,
which is opened when the window is pulled down and closed when it is discarded. This is
an example of a secondary window, and thus lies entirely within its primary.

8) Scroll arrows: when the number of files is too large for the menu sub-window, the
application increases the number of control sections from none to one, and calls the
Window Manager routine provided to draw these bars. The Window Manager also provides
the routine to scroll through the list of files.

9) Scroll bar: this allows easy scrolling through the whole range of files.

QPTR The Pointer Environment 44

S*BASIC

Keywords
The Keywords added by the Pointer Toolkit are split into two groups. The first deals with

those routines which use only the Pointer Interface, the second with the routines that also
require the Window Manager.

Pointer Interface routines
Optional parameters are included in square brackets, thus [option], or curly brackets

{xpos,ypos}.

Where this is of the form [#ch,] it shows that a channel number may be specified. If in
any case it is not, the channel number defaults to #1 as usual.

Where an option occurs in square brackets that parameter may be specified or not as
desired; where it occurs in curly brackets it may be specified zero, one or more times. For
some optional parameters a table of the default values is given, with the effect the default
value will have. If the default value is given as "none", then the procedure or function will do
something different if the parameter is given, and there is no value that you can give this
parameter that will have the same effect as omitting it. For instance, the RPIXL function just
reads the colour of a pixel if no scan direction is given, but always scans if a scan direction is
given, and no value of the scan direction parameter means "do not scan".

Separators are significant only where specified: otherwise you may choose any of the five
possibilities (, ; ! \ TO), depending on which you find the most readable.

HOT_STUFF str1$[,str2$]
Option Default Meaning
str2$ "" stuff only str1$

This procedure puts a string into the HOTKEY buffer: str1$ is put in the buffer first,
immediately followed by str2$ if present. The string in the HOTKEY buffer may be retrieved
by typing "ALT SPACE" in any job, which will act as if the characters of the string had been
typed instead of the "ALT SPACE".

This facility is available only if the HOTKEY job is active.

LBLOB [#ch,][TO]{xpos,ypos{ TO xpos,ypos},}blob,pattern

This procedure draws one or more lines of blobs. Apart from the optional channel number
and the required blob and pattern, the parameters consist of co-ordinates preceded by
TO or a comma: those preceded by a comma set the start point for drawing, those with a TO
draw a line of blobs to the given end point and reset the start point to that end point. The
start point is also set by the WBLOB procedure, and is kept in S*BASIC's channel table
between calls, so successive LBLOB TO ... calls will work as expected.

Co-ordinates are in pixels, blobs which would fall wholly or partly outside the window are
not drawn.

QPTR The Pointer Environment 45

MKPAT addr,buffer

Converts a screen save buffer , as created with the PSAVE function, into a pattern. The
contents of the buffer are copied to the address given in addr, and there must be enough
memory there for that copy of the buffer plus a graphics object header (18 bytes). The
amount of memory required may be determined by a call to the SPRSP function, giving a
width parameter the same as the x-size of the buffer, and a height parameter of half the
buffer height.

The width will be truncated to the nearest 16 pixels, so the saved image in the buffer
must be at least 16 pixels wide.

MS_HOT [#ch,]hot$

Set the string stuffed into the current keyboard queue when both mouse buttons are
pressed simultaneously. The string hot$ may be 0, 1 or 2 non-null characters to clear or set
1 or 2 characters to be stuffed. Because these characters appear in the keyboard queue
before any further processing is done, they may be translated by the ALTKEY or HOTKEY
processes to produce longer strings or start HOTKEY jobs.

You are advised to use this procedure only in BOOT files or utilities which invite the user
to supply a mouse hotkey, e.g. system control panels.

MS_SPD [#ch,]accel[,wakeup]
Option Default Meaning
wakeup none don't change wakeup speed

This procedure modifies the response of the keyboard and mouse pointer movement.
The accel parameter sets the acceleration of the mouse, making the pointer move quickly
or sluggishly: it also affects the gradual speed increase when the pointer is driven from the
key-board.

The wakeup parameter applies only to the mouse, and sets the minimum speed that has
to be reached before the (currently invisible) pointer appears: a high value will mean that an
accidental nudge of the mouse while you are typing will be less likely to cause the pointer to
appear.

Both parameters are limited to a range of 0 to 9.

You are advised to use this procedure only in BOOT files or utilities which invite the user
to change the mouse response, e.g. system control panels.

OUTLN [#ch,]xsize,ysize,xorg,yorg[,xshad,yshad][,move]
Option Default Meaning
xshad 0 no x shadow
yshad 0 no y shadow
move 0 discard window contents

The OUTLN procedure sets the "outline" of a window, and signals to the Pointer Interface
that the window is "managed" - see the CONCEPTS section for explanations of these terms.
Only managed windows with managed "primaries" may be used for pointer input: S*BASIC's
primary window is usually #0.

QPTR The Pointer Environment 46

The three optional parameters default to zero, but you can specify the move key, the
shadow widths, or both if you wish. The shadow will appear to the right or the bottom if
xshad or yshad are positive. The move key will discard the current window contents if it is
zero, or move them to the new position if it is set to 1 - you must keep the x and y sizes the
same for this to work! If you set the outline of a secondary window, then the area underneath
it will be saved, and restored when the outline is set again: this allows you to implement pull-
down windows without having to do the saves and restores yourself.

result =PICK([#ch,]job-ID key)

This function picks the primary window belonging to a given job to the top of the "pile" on
the screen, in the same way that the user can pick windows with "CTRL C" or by pointing
and hitting with the pointer. The job-ID may be specified as two numbers, <job number>,
<tag>, or as one composite number, <tag>*65536+<job number>: this is consistent with
SuperToolkit II. Alternatively a key may be specified. If this is -1 then whichever job is at the
bottom of the pile will be picked to the top: if it is -2, then the window specified will be marked
"unlockable".

If the job specified doesn't have a window, or doesn't exist, then the result will be -2, the
QDOS/SMSQ/E error code for "invalid job" - otherwise it will be zero, signalling success.

This function should be used with discrimination, unless you find it particularly amusing to
have windows popping up at random.

Example:

1000 IF PICK(job_id)<0 THEN PRINT "Can't pick ";job_name$

PREST [#ch,]buffer,bufxo,bufyo,xsize,ysize,winxo,winyo,keep

This procedure restores a block, xsize by ysize pixels, from a buffer into a window.
If keep is set to 1 then the buffer is kept, if 0 then it is discarded. The buffer may also be
discarded by using the SuperToolkit II procedure RECHP.

result=PSAVE([#ch,]buffer,bufxo,bufyo,xsize,ysize,winxo,winyo
[,bufxs,bufys])
Option Default Meaning
bufxs/ys none buffer is set up, address is valid

This function saves a block from a window into a buffer in memory: the block size and
origin in the window are given in xsize, ysize, winxo and winyo, and the origin in the
buffer of the block to be overwritten is given in bufxo and bufyo. A new buffer is set up by
specifying a buffer size in terms of pixels, in bufxs and bufys - in this case the result
returned is the address of the buffer. This function, and its complementary procedure PREST,
allow the generation of graphics data over an area bigger than the screen of the QL. Note
that when the buffer is set up, it is cleared to black, and that the only way of modifying it is
with PSAVE.

Example:

100 REMark Save the top left 100x100 pixels of channel 1
110 REMark into the top left of a new 512x768 buffer. 120 :
130 buffer=PSAVE(0;0,0;100,100,0,0;512,768)
140 :
150 REMark Now draw a big circle, and save that 100

QPTR The Pointer Environment 47

160 REMark pixels across the buffer.
170 :
180 FILL 1:CIRCLE 50,50,30
190 d=PSAVE(buffer;100,0;250,200,0,0)
200 :
210 REMark Now restore some of what we saved before,
220 REMark and some of the circle, at the bottom
230 REMark right of the window.
240 :
250 PREST buffer;50,50;100,100,150,100;1

result=RMODE

This function reads the current display mode, returning:
• 4 for 4-colour QL mode
• 8 for 8-colour QL mode
• 16 for fixed 8-bit colours (Aurora)
• 32 for 16 bit QPC-style colours (QPC, QXL, SMSQmulator)
• 33 for 16 bit Q40-style colours (Q40, Q60)

This function can and should be used to avoid doing MODE calls to set the display mode

to the one the machine is in already!

result=RPIXL([#ch,]xstart,ystart[,direction[,colour[,same]]])
Option Default Meaning
direction none no scan
colour -1 start pixel is reference colour
same 0 scan to different colour pixel

The simple form of this function returns the colour (0-7) of the pixel at xstart,ystart.
If a direction is given, the function scans horizontally or vertically from the start point

(0=up, 1=down, 2=left, 3=right) until a pixel of a different colour is found, and returns the
coordinate of that pixel. Since the scan is horizontal or vertical the other coordinate remains
constant.

If a colour is given then the scan looks for a pixel of a different colour to that given: if no
colour is given, or the given colour is specified as -1, then the colour of the start pixel is used.

If the same flag is given, a value of 1 scans for a pixel of the same colour as the
reference: a value of 0 scans for a different colour.

If the scan reaches the edge of the window without finding a pixel of the required colour
then the co-ordinate returned is -1.

Please note that this function does NOT work on higher colour drivers (i.e.
anything other than the original QL colours).

QPTR The Pointer Environment 48

RPTR [#ch,]xabs%,yabs%,term%,swnum%,xrel%,yrel%,bt$

Read the pointer position in the given window, which must be "managed" - see the
description of OUTLN and the Concepts chapter for more details. The procedure will return
under various circumstances, depending on the value of term%:

Bit set returns if...
0 ...a keyboard key or mouse button is pressed.
1 ...a keyboard key or mouse button is, or continues to be, pressed. Normal auto-

repeat speeds apply.
2 ...a keyboard key or mouse button is released.
3 ...the pointer is moved from the given absolute co-ordinates
4 ...the pointer is, or moves, out of the window
5 ...the pointer is in, or moves into, the window
6 ...the pointer hit the edge of the screen

Bit 7 selects a special mode, in which all other jobs' windows are locked, and a special
sprite appears depending on the values of bits 0 and 1:

Bit set sprite shown
1 "window change size"
0 "window move", unless bit 1 is set
neither "empty window"

Bits 2 to 6 should all be clear when bit 7 is set. The co-ordinates returned are always
absolute, rather than relative to the origin of the window used to make the call.

Apart from the above "window request" mode, the co-ordinates returned in xrel% and
yrel% will be relative to the origin of a window or "sub-window". If the pointer was in a sub-
window then the value of swnum% will be 0 or greater, otherwise it will be -1. See the de-
scription of SWDEF to find out about sub-windows.

If a "return on move" is requested then xabs% and yabs% are used as the reference
point - when the pointer is moved from this position then the call will return. These variables
are normally set up at the start of the program, and subsequently updated only via the RPTR
call.

The value of bt$ is a single character string. If a button or key press happened, the
character will correspond to the key except for the following "event keystrokes":

Key CHR$ Event
None 0 no key pressed
SPACE/left mouse 1 hit
ENTER/right mouse 2 do
ESC 3 cancel
F1 4 help
CTRL F4 5 move window
CTRL F3 6 change size
CTRL F1 7 sleep
CTRL F2 8 wake

QPTR The Pointer Environment 49

The values of xabs%, yabs%, term% and swnum% should be set before calling this
procedure, as they are used to determine when the call will return. On return all the
parameters will be set to the appropriate values. Note that if you call the procedure with
the wrong type of variable (float instead of integer, for instance) then you'll get some
very odd results - use only integers for the first six parameters, and a string for the
last.

As this routine returns values through the parameter list, it is not compatible with the
Super/Turbocharge compilers.

Examples:

1000 xa%=0 : ya%=0 : kystk=1 : swnum%=-1
1010 OUTLN 256,202,256,0;1 : BORDER 1,255
1020 REPeat l
1030 rt%=kystk : REMark Return when a key is hit
1040 RPTR xa%,ya%,rt%,swnum%,x%,y%,bt$
1050 PRINT #2;x%,y%,CODE(bt$)
1060 END REPeat l
1000 REMark Set up current absolute position
1010 REMark and sub-window number:
1020 REMark OUTWN+INWIN returns instantly
1030 :
1040 OUTLN 256,202,256,0;1 : BORDER 1,255
1050 outwn=16:inwin=32:rt%=outwn+inwin
1060 xa%=0:ya%=0:swnum%=-1
1070 RPTR xa%,ya%,rt%,swnum%,x%,y%,bt$

On SMSQ/E (from version 1.71 onwards), it is also possible to return on a job event.
To do this, put the events to be used for termination in the higher byte of the term%
parameter.

Example :
term%=$2001: rem return on keyboard/mouse button event or job event $20
RPTR xabs%,yabs%,term%,swnum%,xrel%,yrel%,bt$: rem wait for events
PRINT term% DIV 256 : rem will print $20 (=32) if a job sent event $20

result=SPRSP(width,height)

This function calculates the memory space required to store the definition of a sprite of
the given width and height, both in 4-colour mode pixels. This is particularly useful for
loading multiple sprites into one piece of memory by calculating the space for each and then
allocating it all at once: this reduces overheads and heap fragmentation.

QPTR The Pointer Environment 50

SPHDR addr,xsize,ysize,xorg,yorg,md[,next]
SPHDR addr,next

This procedure sets up a sprite header to be filled by the SPLIN procedure: there must be
enough room at the address given in addr for a sprite of the required size.

The sprite may be linked to the next one in a list, either as an option on the long form of
the procedure, or using the short form. Such linked sprites may be defined for use in different
modes, as specified by md. When used as a pointer or drawn using WBLOB or WSPRT, the
list will be searched for a definition suitable for use in the current mode.

Example:

1000 REMark Set up a pointer for #1, shape depending
1010 REMark on mode.
1100 :
1110 REMark First the pointer that appears
1120 REMark in mode 4
1130 :
1140 spr4=ALCHP(SPRSP(9,9))
1150 SPHDR spr4;9,9,5,5;4
1160 linum%=0
1170 SPLIN spr4,linum%,' ww '
1180 SPLIN spr4,linum%,' waw '
1190 SPLIN spr4,linum%,' waaw '
1200 SPLIN spr4,linum%,' wawaw '
1210 SPLIN spr4,linum%,' wawwawww'
1220 SPLIN spr4,linum%,'waaaaaaaw'
1230 SPLIN spr4,linum%,'wwwwwawww'
1240 SPLIN spr4,linum%,' waw '
1250 SPLIN spr4,linum%,' www '
1300 :
1310 REMark Now set up a sprite to appear in mode 8
1320 REMark and link it to the mode 4 sprite.
1330 :
1340 spr8=ALCHP(SPRSP(20,10))
1350 SPHDR spr8;20,10,10,5;8;spr4
1360 linum%=0
1370 SPLIN spr8,linum%,' wwwwww '
1380 SPLIN spr8,linum%,' wwaaaaww '
1390 SPLIN spr8,linum%,' wawwwwaw '
1400 SPLIN spr8,linum%,' wawwwwaw '
1410 SPLIN spr8,linum%,' wwaaaaww '
1420 SPLIN spr8,linum%,'wwawwwwaww'
1430 SPLIN spr8,linum%,'waww wwaw'
1440 SPLIN spr8,linum%,'wawwwwwwaw'
1450 SPLIN spr8,linum%,'wwaaaaaaww'
1460 SPLIN spr8,linum%,' wwwwwwww '
1500 :
1510 REMark Attach it to #1
1520 :
1530 OUTLN 256,202,256,0;1 : BORDER 1,255
1540 SWDEF : SWDEF -1;252,200,0,0;spr8
1600 :
1610 REMark Read the pointer: the sprite you see
1620 REMark depends on the display mode
1630 :
1640 ax%=0:ay%=0:swnum%=0:rt=1
1650 REPeat l
1660 rt%=rt
1670 RPTR ax%,ay%,rt%,swnum%,xr%,yr%,bt$
1680 END REPeat l

QPTR The Pointer Environment 51

SPLIN addr,linum%,patt$

Fill in one line of pixels in a sprite. The header must have been set up previously using
the SPHDR procedure. The line to set is given by linum% , with line 0 being the top: if the
line number is too big you will get an "out of range" error. The pixel colours are specified in
patt$, as for SPSET. If the line number parameter is a variable then it will be incremented
after this call, so successive calls to SPLIN will set successive lines of a sprite: this feature
will not work with the Super/Turbocharge compilers.

SPRAY xorg,yorg,blob,pattern,pixels

This procedure works in a similar way to WBLOB, but instead of writing the whole blob it
writes only a few pixels from it: the number of pixels written is given by the pixels
parameter. These are chosen "at random" from the blob to give a spray effect. Somewhere
between 5% and 20% of the total number of pixels in the blob usually gives a good result. If
you spray several times with the same parameters the blob will gradually fill in, but there is
no guarantee that it will ever do so completely, even if the pixels parameter is the same as
the total number of pixels in the blob. This is not implemented for high colours and
returns an error (invalid paramater)!

SPSET addr,xorg,yorg,md,shape$(ysize,xsize)

This procedure sets up the data for a sprite, in a suitable form for a particular QL mode as
specified in md. The size is given by the dimensions of the string array shape$ defining the
sprite: for convenience you may pass an array slice. The sprite's origin must also be given in
xorg,yorg.

The colour of each pixel of the sprite is specified by a character in the string array, the top
left pixel being specified by shape$(0,1), the top right by shape$(0,xsize), the bottom
right by shape$(ysize-1,xsize) and so on. Note that the rows run from 0 to n-1, as in
other arrays, but the columns from 1 to n as for strings.

The colour characters permitted are "aurmgcyw ", standing for pixels that are blAck,
blUe, Red, Magenta, Green, Cyan, Yellow, White and transparent (space).

Example:
100 DIM shape$(10,10):RESTORE 180
110 READ xsize,ysize,xorg,yorg,md
120 FOR i=0 TO ysize-1:READ shape$(i)
130 addr=ALCHP(SPRSP(xsize,ysize))
140 SPSET addr,xorg,yorg,md,shape$(0 TO ysize-1,1 TO xsize)
150 REMark Concentric rings with a hole in the centre
160 DATA 7,7,3,3,4
170 DATA ' www '
180 DATA ' wgggw '
190 DATA 'wgrrrgw'
200 DATA 'wgr rgw'
210 DATA 'wgrrrgw'
220 DATA ' wgggw '
230 DATA ' www '

QPTR The Pointer Environment 52

SPTR [#ch,] xpos,ypos [,key]
Option Default Meaning
xpos,ypos none New pointer position
key -1 origin key

Moves the pointer to the position given by xpos and ypos. If the key is 0, then the
pointer position is in absolute screen coordinates. If the key is -1, the position is relative to
the current window definition, a key of 1 means that is is relative to the current hit area.

SWDEF [#ch,][swnum[,xsize,ysize,xorg,yorg[,sprite]]]
Option Default Meaning
swnum none clear all sub-window definitions
xsize..yorg none clear given sub-window definition
sprite none use default sprite

This procedure sets or clears a sub-window definition. If no parameter is given then the
sub-window list for the window is removed entirely: if just the sub-window number swnum is
given, then that sub-window definition is removed: and if a definition is given, then that sub-
window is (re-)defined. Optionally the address of a sprite definition, sprite, may be
appended, in which case the pointer will change to that sprite when it is within the sub-
window.

The origin given is relative to the "hit area" of the window, which must be "managed". The
sub-window definition for the main part of the window may be set by specifying a sub-window
number of -1: the origin in this case is absolute. Removing the sub-window definition of the
main part of the window will reset the sprite to the default, and the area to the hit area.

Note that if you wish to use N sub-windows, you must specify all sub-windows from 0
through N-1, and in addition the window's primary must be managed (must have had its
outline set with OUTLN). Sub-windows are checked starting at sub-window 0, up to the first
unset one, and then the main part. To avoid fragmenting the heap more than is necessary,
you are advised to define the highest numbered sub-window first.

Example:
100 REMark Remove all current definitions, and put
110 REMark one sub-window across the top of #1, and one
120 REMark down the side with a special "hand" sprite.
130 :
140 SWDEF
150 SWDEF 1;250,20,0,0
160 SWDEF 0;40,100,0,21;hand

QPTR The Pointer Environment 53

WBLOB [#ch,]x,y,blob,pattern

This procedure writes the blob into the given channel, using the pattern, at the given
co-ordinates x,y. These co-ordinates are also used to update the default start point for the
LBLOB procedure. The blob specifies the shape of what appears, the pattern the colour, so
you would need one blob and three patterns to draw red, yellow and blue flowers. In this
version the blob is not drawn if it overlaps the edge of the window, or falls outside it. The blob
and pattern are pointers to items of the appropriate sort - probably loaded into the heap with
an ALCHP followed by an LBYTES, or set up from S*BASIC by calls to SPSET , SPHDR or
SPLIN. In early versions of the Pointer Interface no check is made on the blob and pattern,
and the blob drawing routine can be crashed quite easily by duff data: you have been
warned!

Note that any sprite may be used as a blob, and any sprite whose width is a multiple of
16 may be used as a pattern.

WSPRT [#ch,]x,y,sprite

This procedure is very similar to WBLOB, except that the sprite data structure defines
both shape and colour information, so you would need three complete sprite definitions to
draw red, yellow and blue flowers - but they could all be different shapes. The same
comments apply with regard to drawing outside the window and using valid sprite definitions.

A feature of versions 1.13 onward of the Pointer Interface is that the built-in sprite
definitions may be written if a small integer is specified rather than an address:

Value of sprite Sprite drawn
0 Pointer arrow
1 Lock
2 Window request
3 4 or 8
4 Keyboard
5 No Entry
6 Window Move
7 Window Resize
8 Mouse wdw move
9 Mouse wdw resize
10 Sleep
11 Wake
12-23 F1 - F12
24-35 Control F1 -F12
36 Cursor
37 Flashing Cursor *

* note that a flashing cursor sprite only flashes if it is used as a cursor, not if it is
used anywhere else in the window.

WREST [#ch]

This procedure restores the saved area of the given window. The save area is lost. This
procedure should be used only when the window size has not changed.

QPTR The Pointer Environment 54

Window Manager routines

The following S*BASIC routines form an interface to the Window Manager. They are in
four groups, definition routines, drawing routines, access routines and change routine.

The majority of these routines make use of arrays to pass long parameter lists to them
with the minimum of typing: unfortunately routines which use array parameters are not
compatible with the Super/Turbocharge compilers, and you will be unable to compile
programs which use them with these compilers.

The amount of stack used by the Window Manager on some calls is greater than that
permitted for machine code S*BASIC procedures or functions: this has not caused us any
problems with the interpreter, but has resulted in crashes with program compiled with
Q_Liberator, versions up to 3.12. Versions from 3.21 onwards allow more stack, and do not
suffer from this problem. If you have Q_Liberator v.312 or earlier then compiled programs
may be used if processed with the STKINC utility: see the Utilities chapter for more details.

Definition routines

These set up parts of a window working definition, given parts of the window definition in
one or more arrays. Each is a function which returns the address of the data structure set up:
these addresses are then used as parameters in further calls to the Window Manager
routines.

lilst=MK_LIL(attr(3,3),size%(n,1),org%(n,1),jus%(n,1),sk$, type%
(n),strg$(p,m),pspr(q),pblb(r),ppat(s))

Make a loose item list, complete with attributes.

There are n+1 items in the list. Each item has its own size, origin and justification in the
appropriate arrays, the x-attribute being in arr%(i,0) and the y in arr%(i,1). The
justification specifies whether the object is to be left/top justified (positive values),
right/bottom justified (negative values) or centred (zero). Non-zero values give the distance
in pixels from the appropriate edge of the area defined by the size and origin of the item. The
sk$ string array contains the selection keys for the items, one for each item and in UPPER
case. Use chr$(0) for any item that should not have a selection key.

The type% array specifies not only the type of each item in the bottom byte of each word,
but also the action to be taken on "hitting" each item: if the top byte is zero, then no further
action is taken, if non_zero then the RD_PTR call returns: if +1, the item's status is reset to
available before returning, if -1 no change is made to the status. To set the top byte to +1 or
-1, add +256 or -256 to the item type. The value of the bottom byte may be 0 or values above
128 for string items, 2, 4 or 6 for sprite, blob or pattern items: up to p+1 elements of type%
may have a bottom byte of 0, q+1 of 2, and so on. When an element specifies that an object
should be of a given type, then the next object is taken from the appropriate array. Thus if
type% contains the values 0, 2, 2, 4, 2 and 6 then the objects will come from strg$(0),
pspr(0), pspr(1), pblb(0), pspr(2) and ppat(0).

If an item is null (a zero length string or zero pointer) then it is assumed that the item is
absent: such items may be reset later with the CH_ITEM procedure.

QPTR The Pointer Environment 55

For string items, the type% is either 0 or an even negative value Negative mean that the
type is a string and that ONE letter of that string must be underlined (which is then generally
taken to mean that this is the key that must be pushed on the keyboard to “hit” or “do” the
item and thus should correspond to the selection key for that item). -2 means that the item is
a string and that the first letter of that string must be underlined. -4 means that the item is a
string and that the second letter of that string must be underlined, and so on, deducting 2 for
each letter further in the string. Only ONE letter can be underlined. The formula is :

type% = 0 - (number_of_letter_to_be_underlined * 2)

iolst=MK_IOL(size%(n,1),org%(n,1),imod(n),type%(n),strg$(p,m),
pspr(q),pblb(r),ppat(s))

Make an information object list. Size%, org%, type% and the object arrays are the
same as for a loose item list. There are no justification or selection arrays, and the top byte
of type% is ignored. Objects are taken in turn from the strg$, pspr, pblb and ppat
arrays, depending on the contents of type%, as for the MK_LIL function.

If an information object is a piece of text, or a blob or pattern, additional information is
required to draw it: in the case of text, you need to specify how big it is and what colour: a
blob needs to be drawn using a pattern: and a pattern needs to drawn using a blob. The
imod array specifies this additional information: if item N is a blob or pattern then imod(N)
contains a pointer to a pattern or blob to combine with it. If item N is text then the colour and
size are combined using the magic formula <ink>*65536+<csize_x>*256+<csize_y>.
So a large red piece of text would have an attribute of 2*65536+3*256+1, or 131841.

aolst=MK_AOLST(iattr(3,3),jus%(n,1),sk$,type%(n),strg$(p,m),
pspr(q),pblb(r),ppat(s))

Make an application sub-window object list. Very similar to a loose menu item list, except
that there are no size or origin attributes. If the bottom byte of type(0) is odd then the list is
assumed to be of index items, and the item number is set to $FFFF and the action routine to
0. In this case the attributes specified are those to be used for the index items (see below).

cdef=MK_CDEF(maxsec%,arrc%,barc%,secc%)

Make a control definition list: this specifies the maximum number of sections into which
the sub-window can be split, and the colours for the arrows (arrc%), bars (barc%) and bar
sections (secc%). After this area is reserved enough space for a section control block with
up to maxsec% sections.

aslst=MK_ASL(size%(n,1)[,isiz%,ispc%])

Make an application sub-window spacing list. size%(i,0) gives the hit size, size%
(i,1) the spacing. The sizes and spacings for the index bars may also be set. Two
spacing lists are required for each sub-window, one for each axis.

QPTR The Pointer Environment 56

rwlst=MK_RWL(aolst,se%(n,1))

Make an application sub-window row list. There are n nows, the i'th starting with item se%
(i,0) and ending just before item se%(i,1). The object list is at aolst, as returned by
a call to the MK_AOL function.

apw(n)=MK_APPW(wdef%(3),wattr%(3),ptr,sk$,[x_cdef,y_cdef,
x_off%,y_off%, x_aslst,y_aslst, x_aolst,y_aolst, rwlst])

Make an application sub-window definition. If a menu sub-window is required, all
parameters must be given. The pointers to the index list definitions (x_aolst and y_aolst)
should always be zero since no indexes exists in current versions of the Pointer
Environment. The pointers to the control definitions and (x_cdef and y_cdef) may be
zero if the corresponding control definition is not required. However, the spacing list and
row-list pointers (x_aslst, y_aslst and rwlst) are required. The pointer and selection
key (ptr and sk$) may be zero and the null string if these are not required. The number of
items in a spacing list, index item list and row/column must be consistent.

As a special case a sub-window may be defined with only the first four parameters, in
which case a special hit routine is used which results in a RD_PTR call returning every time
the pointer is moved or a key is hit in that sub-window.

iwlst=MK_IWL(wdef%(n,3),wattr%(n,3),iolst(n))

Make an information sub-window list. Each information sub-window has a size and
position in wdef%(i), attributes given by wattr%(i): the pointer to the object list in
iolst(i) should be the result of a call to the MK_IOL function.

awlst=MK_AWL(apw(n))

Make an application sub-window list. The array of pointers, to sub-window definitions
generated by the MK_APPW function, is copied and terminated with a long word of zero.

wdef=MK_WDEF(wdef%(3),wattr%(3),ptr,lilst,iwlst,awlst)

Make a complete window definition. Any of the last four pointers may be zero. If non-zero,
ptr should point to a sprite definition to be used as the pointer in the window, while
lilst, iwlst and awlst are the results of calls to the MK_LIL, MK_IWL and MK_AWL
functions.

The window position specified in the wdef% array parameter is NOT the absolute position
at which the window will be drawn, but the initial position of the pointer within the window
when it is drawn. (See the explanation about the initial position in the Concepts section).

QPTR The Pointer Environment 57

Drawing routines

These procedures set up and draw a window from definitions generated by the definition
functions above, and allow an application to re-draw part of a window. Routines are also
provided to position a given window channel "over" part of a window, so that embellishments
may be added and so forth. This is particularly useful in the case of pull-down windows,
whose channels are inaccessible to the S*BASIC program.

The wdef parameters required by all these routines is the result of a call to the
MK_WDEF function.

DR_PPOS [#ch,]wdef,xpos%,ypos%[,lflag%(n)] {,aflag%(p,q)
[,ctx%(maxsec%,2)] [,cty%(maxsec%,2)]}

Position a primary window, or ...

DR_PULD wdef,xpos%,ypos%[,lflag%(n)] {,aflag%(p,q)[,ctx%(maxsec%,2)]
[,cty%(maxsec%,2)]}

... pull down a window. After a window has been positioned or pulled down then it is
drawn. A flag array is passed for the loose items (lflag%) and a flag array (aflag%) and
zero, one or two control definition arrays (ctx% and cty%) for each menu sub-window, and
the items drawn with the given statuses. The channel for a pull-down window is opened, a
primary window's channel must already be open.

When the window appears, the pointer will always be set to the initial pointer position
within the window as specified when the window definition was set up. If the positioning
parameters xpos% and ypos% are set to -1, then the pointer will be moved as little as
possible (often no distance) to accomplish this. If, however, xpos% and ypos% are set to
some other value, then the pointer will be set as close to that absolute position as possible
before the window is pulled down.

A window is always positioned so that its X origin is a multiple of two: this ensures that
any stipples used in the window remain "in phase" at all times.

DR_LDRW wdef,lflag%(n)

The flag array lflag%(n) is copied into the loose items status block, and the loose
items are then re-drawn. If no change bit is set in any flag, then all items are re-drawn,
otherwise only changed items are re-drawn.

DR_ADRW wdef,aswnum%,aflag%(p,q)[,ctx%(maxsec%,2)][,cty%(maxsec%,2)]

The flag array aflag% is copied into the status block of the menu application sub-window
referred to by the aswnum% parameter, the control definition arrays ctx% and cty% (if any)
copied into the control block, and the menu sub-window is re-drawn, using the same rules as
for loose menu items. If element (0,1) of a control definition is non-zero, then the whole sub-
window is re-drawn, regardless of the item status changes.

QPTR The Pointer Environment 58

DR_IDRW wdef,infwm

This procedure re-draws any of the first 32 information sub-windows in the window given
by wdef. The infwm is interpreted as a bit map of the windows to be re-drawn, with a clear
bit corresponding to a window to be re-drawn. Thus a value of -2=$FFFFFFFE will re-draw
information sub-window 0 only, -6=$FFFFFFFA will re-draw windows 0 and 2, and so on.

DR_AWDF [#ch,]wdef,swnum%

Set a channel to cover the same screen area as the given application sub-window.

DR_IWDF [#ch,]wdef,iwnum%

Set a channel to cover the same screen area as the given information sub-window.

DR_LWDF [#ch,]wdef,item%

Set a channel to cover the same screen area as the given loose item.

DR_UNST wdef

Unset a window definition. A window that was pulled down is removed and its channel
closed.

QPTR The Pointer Environment 59

Access routines

RD_PTR wdef,item%,swnum%,event%,xrel%,yrel% [,lflag%]{,aflag%[,ctx%]
[,cty%]}

Read the pointer via the Window Manager: the call returns when a window event occurs,
or a return item is "hit". In addition to the returned parameters, the item statuses are copied
back into the appropriate arrays. The item number and sub-window number of the last item
hit are returned in item% and swnum%, and the event causing the return in event%: this may
be 128 for a hit on an item causing an automatic return, or one of the following values,
caused by an "event generating" keystroke:

Event name Keystroke event% value
Do ENTER 1
Cancel ESC 2
Help F1 4
Move CTRL F4 8
Resize CTRL F3 16
Sleep CTRL F1 32
Wake CTRL F2 64

The flag and control arrays are copied into the relevant status areas on entry. If any of
the statuses have changed (signalled by odd flag values), the changed items only are re-
drawn: if a control definition has changed, then the whole of that menu is re-drawn. This
frequently avoids the need for explicit re-draw calls.

The returned pointer co-ordinates xrel% and yrel% are relative to the top left corner of
the sub-window.

If the pointer is in an application sub-window which is not a menu sub-window, then the
call will return whenever a key is pressed or the pointer is moved. Since such a sub-window
has no items in it, the keystroke and keypress are returned respectively in the high and low
bytes of item%. Note that moving the pointer via the cursor keys produces keystrokes,
whereas moving it with a mouse does not.

RD_PTRT wdef,item%,swnum%,event%,timeout%,xrel%,yrel% [,lflag%]{,aflag%[,ctx%]
[,cty%]}

This function, which is nearly the same as the RD_PTR call above, needs QPTR v.0.14
onwards. Except for the event% parameter, and the additional timeout% parameter, all
other parameters have the same meaning and values as for the RD_PTR call.

There is one additional parameter, the timeout,given in 50 or 60 Hz ticks. A timeout of
50 (or 60 in the US) will this wait for 1 second before returning, unless another event
happened before that. Contrary to normal convention, you may not give a timeout of -1
(which would mean an indefinite timeout) and the longest timeout admissible is -2. When the
call terminates due to a timeout, the event% returned will be 0.

Under SMSQ/E, with this call it is also possible to specify on what job event the call
should return. For this, on entry, the higher byte should be a bitmap of the job events the call
should listen for (i.e. set this to -256 to listen to all job events). On return, the higher byte will
contain the event(s) that caused the return. Job events depend on support from the
underlying OS, thus may not exist on systems other than SMSQ/E where SEND_EVENT
may be used.

QPTR The Pointer Environment 60

Change routines

CH_ITEM wdef,swnum%,item%,type%,selkey$,value

Change the given item in the given sub-window to the new value, type and select
key,given in value, type% and selkey$. The type of the value may be string or floating
point,depending on the type of the item. Special values are:

swnum% -1 for loose item, -n for information item in information window n-2 (n>1):
thus -2 to alter information window 0, -3 to alter window 1 etc...

type% -1 for no change
selkey$ "" for no change (ignored in information window)

chr$(0) for no select key.

CH_PTR wdef,swnum%,newptr

Change the pointer sprite for a sub-window. If the sub-window number given in swnum%
is -1 then the main window's sprite is re-defined. If the address of the pointer sprite, given in
newptr, is zero then the default sprite is used. This is the same as the main window's sprite
for a sub-window, and is the arrow sprite for the main window.

CH_WIN wdef[,xdsiz%,ydsiz%]

Change a window's size or position. If only the wdef parameter is given then the
window's position is changed, otherwise the size change required is returned in xdsiz% and
ydsiz%. Since the window's layout will probably change fairly drastically when the size
changes, it is up to the programmer to decide the effect of the result returned. Note that
changing the position of a primary window does not change the positions of its secondaries:
any sub-windows of the moved window do move with it, as their positions are defined relative
to it.

As for the initial positioning of a window, the X origin will always be a multiple of four, and
the Y origin a multiple of two, to keep stipples "in phase".

QPTR The Pointer Environment 61

Array parameters

Some forms of array parameters are used in many of the above routines: their dimension
and contents are defined below.

Array name Contents

wattr%(3) Window Attributes
Element Data
0 shadow depth
1 border width
2 border colour
3 paper colour

iattr(3,3) Item Attributes
Element Data
0,0 current item border width
0,1 current item border colour
0,2/3 spare,0
1,0 unavailable item background colour
1,1 unavailable item ink colour
1,2 unavailable item pointer to blob
1,3 unavailable item pointer to pattern
2,0 TO 3 available item
3,0 TO 3 selected item

Note that only the current/unavailable attributes are used for index items, but that the
available and selected attributes must still be set. If a separate attribute array is used for
index items, rows 2 and 3 may be left as 0.

wdef%(3) (Sub-)window size/position definition
Element Data
0 window x size
1 window y size
2 window x origin (Initial pointer position, when
3 window y origin used in main window definition)

The flag arrays determine the status of each item in a window: if an item's status is
changed by the program, a re-draw may be requested by adding 1 to the required status.
The re-draw will take place either when specifically requested by a call to one of the re-draw
routines, or automatically on a call to RD_PTR.

lflag%(n) and Loose item flag array and
aflag%(n,m) menu item flag array
Flag value Item status
0 available
16 unavailable
128 selected

cta%(maxsec%,2) Control definition array
Element Data
0,0 current number of control sections
0,1 <>0 if the control definition is changed
i,0 start pixel position
i,1 start column/row
i,2 number of columns/rows visible in wdw

QPTR The Pointer Environment 62

New colour handling

These keywords are useful for colour handling using the new WMAN colours. (For an
explanation on these colours, see the Assembler section, Data structures, Pointer Interface
Channel Definition, new WMAN colours). The parameters of these keywords are exactly the
same as for the "normal" commands. The same is true with their names, except for the
'WM_" prefix:

WM_PAPER [#channel],colour

Sets the colour which is a word as described above. It also sets the strip as is the case
with the normal PAPER command. But there is also the WM_STRIP command to set the
strip only.

Further commands are:

WM_INK [#channel],colour
WM_BORDER[#channel],width,colour
WM_BLOCK [#channel],xs,ys,xo,yo,colour
WM_STRIP [#channel],colour

They all take the same number and kind of parameters as the the usual commands, but
use the new colours.

Palette handling

For those systems where system palettes are available, there are commands to set/get
the system palette and commands to set/get the per job palettes.

System palette keywords

SP_RESET [#channel] [,number]
Option Default Meaning
number 0 which colour palette to reset

This resets the colour palette given in number to the original values (as configured).
Default is number 0.

result% = SP_GETCOUNT

Gets the number of elements contained in a system palette. Each system palette, of
course, has the same number of elements.

QPTR The Pointer Environment 63

SP_GET [number,] address, first, count
Option Default Meaning
number 0 which system palette we want

This gets the colours from a system palette and puts them somewhere. The optional
number parameter tells us which system palette we want (0 to 3, default = 0). address is
the address of the space for the information, first is the number of the first system palette
colour to get (starting from 0) and count is the number of colours to get.

The space pointed to by "address" MUST have enough space for the number of colours!
This is NOT checked by the keyword and it is the programmer's responsibility to make sure
that this is so.

As an example, you could use the following code to get ALL of the colours of a system
palette:

totcol%= SP_GETCOUNT : rem get nbr of colours in system palette
address= ALCHP(totcol%*2)+4 : rem enough space for colours + security
first=0
SP_GET #1,0,address,first,totcol%

SP_SET [#channel,] [number,] address, first, count
Option Default Meaning
number 0 which system palette we want

Sets the system palette entries, the address pointing to a space containing the colours.
The parameters are similar to those for SP_GET.

Job palette keywords

SP_JOBPAL [#channel], jobID/Job_name, number

Set the system palette for the job given to the number. The job is given either as a string
(e.g. "FiFi") or as a standard Job ID number.

SP_JOBOWNPAL [#channel],jobID/Job_name, pal_pointer

Set the job palette to the palette given in pal_pointer. Of course, the palette must have
the format of a standard system palette.

QPTR The Pointer Environment 64

System sprites handling

There is a new keyword to set any sprite as a system sprite. This facility is only
possible on SMSQ/E systems.

SYSSPRLOAD system_sprite_number,file_name$

This loads the file and sets it as the system sprite with the given number.

Please make sure that this file only contains the sprite data for a valid sprite. The
command does NOT check this. If this command seems to fail, i.e. the cursor sprite doesn't
change to what you want it to be, the data contained in this file is perhaps not a valid cursor
sprite for the current screen resolution.

QPTR The Pointer Environment 65

Index of keywords
The keywords are summarised in alphabetical order, together with an indication of what

action they perform. Those marked SMSQ/E need SMSQ/E, PTR require the Pointer
Interface, WMAN also need the Window Manager, unmarked ones are independent of either.
Those marked P are procedures, F are functions: an A signifies that the routine uses array
parameters, and an R that it returns results through its parameter list. Having either of the
latter properties makes a program using the routine uncompilable with the
Super/Turbocharge compilers.

CH_ITEM WMAN P change a menu item
CH_PTR WMAN P change a menu or sub-window's pointer sprite
CH_WIN WMAN PR change a window's position or size
DR_ADRW WMAN P A re-draw an application sub-window
DR_AWDF WMAN P put window over application sub-window
DR_IDRW WMAN P A re-draw an information sub-window
DR_IWDF WMAN P put window over information sub-window
DR_LDRW WMAN P A re-draw loose menu item(s)
DR_LWDF WMAN P put window over loose item
DR_PPOS WMAN P A position and draw a primary window
DR_PULD WMAN P A position and draw a pull-down window
DR_UNST WMAN P unset and remove a window
HOT_STUFF P put string(s) into the hotkey buffer
LBLOB PTR P draw line(s) of blobs
MKPAT P turn a part-window save area into a pattern
MK_AOL F A make an application sub-window object list
MK_APPW F A make an application sub-window definition
MK_ASL F A make an application sub-window spacing list
MK_AWL F A make a list of application sub-windows
MK_CDEF F make a control definition
MK_IOL F A make an information object list
MK_IWL F A make an information window list
MK_LIL F A make a loose item list
MK_RWL F A make an application sub-window row list
MK_WDEF F A make a window definition
MS_HOT PTR P set mouse-hotkey string
MS_SPD PTR P set mouse speed parameters
OUTLN PTR P set a window's outline and shadow
PICK PTR F pick/unlock a job
PREST PTR P part window restore from buffer
PSAVE PTR F part window save to buffer
RD_PTR WMAN PRA read pointer via window manager
RD_PTRT WMAN PRA read pointer via wdw manager with timeout
RMODE F read current display mode
RPIXL PTR F read/scan for pixel colour
RPTR PTR PR read pointer directly
SPHDR P set up sprite header
SPLIN PR set up one line of sprite
SPRAY PTR P spray pixels
SPRSP F calculate space required for a sprite
SPSET PTR P A set up sprite definition from array
SPTR PTR P set pointer to new position
SWDEF PTR P (re)set sub-window definition/pointer sprite
SP_GET WMAN F get colours from system palette
SP_GETCOUNT WMAN F get number of colours in system palette
SP_RESET WMAN P reset system palette to defaults

QPTR The Pointer Environment 66

SP-SET WMAN P set colours in system palette
SP_JOBPAL WMAN P set system palette for job
SP_JOBOWNPAL WMAN P set own palette for job
SYSSPRLOAD SMSQE P load sprite as system sprite
WBLOB PTR P write a blob
WM_BLOCK WMAN P set new WMAN colour for block
WM_BORDER WMAN P set new WMAN colour for border
WM_INK WMAN P set new WMAN colour for ink
WM_PAPER WMAN P set new WMAN colour for paper
WM_STRIP WMAN P set new WMAN colour for block
WSPRT PTR P write a sprite

QPTR The Pointer Environment 67

Assembler

Programmer's Interface

Pointer Interface
The base level of the Pointer Interface is accessed through extended IOSS trap #3

operations. These traps are used in the same way as ordinary QDOS IO calls, but there are
some distinctive characteristics.

Where an x,y coordinate pair is required, this is passed as a long word with the x
coordinate in the upper word, and the y coordinate in the lower word.

In place of the single window area used by normal console output calls (set by
SD.WDEF) the Pointer Interface recognises four different window areas. The largest is the
window outline: this is the total area occupied by a window. The second largest is the
window hit area: this is the window outline less the window's shadow. These two areas are
set by the pointer trap IOP.OUTL. The outline (of a secondary window) is used by the save
and restore traps (IOP.WSAV and IOP.WRST). The outline and hit areas of the primary
windows are use by the buried layers of the Pointer Interface to determine which windows
are locked by other windows which are on top.

Within the hit area there is the window area set by SD.WDEF. This is the area within
which all output will be put: this area will often be fairly dynamic.

Also within the hit area there are all the sub-windows. The sub-window area definitions
are in a list which is set by the pointer trap IOP.SWDF. This sub-window list holds not only
definitions of the sub-window areas, but, for each area, a pointer to the sprite to be used as a
pointer when the pointer is in that area. The only pointer trap which uses the sub-window
definitions is IOP.RPTR (read pointer). If the pointer is within a sub-window of the window,
then the pointer coordinates in the pointer record are set relative to that sub-window.

As the sub-window definition list is held outside the IO sub-system, it is important that the
list be detached from the window channel before the memory holding the list is returned to
QDOS. This will not be a problem if the window channel is closed first or both are returned
by the job being removed from the machine.

Before using any of the Pointer Interface calls, it is as well to check whether the Pointer
Interface is installed, and locate the Window Manager routines.

The Pointer Interface provides facilities for pointer control, pointer access and window
control as well as some additional IO calls to access the area under the pointer. Some IO
calls to windows which overlap the area occupied by the pointer will cause the pointer to be
removed from the screen before the call is executed. When this occurs the pointer will be
restored about a fifth of a second after the last standard IO call to the screen. The pointer
will, however, appear as soon as a pointer position is requested. Where possible, the screen
operations will be carried out without blanking the pointer.

You will find a set of symbols defined in keys_qdos_io for use with these TRAPs.

QPTR The Pointer Environment 68

Additional IO calls

Name D0 Function

IOP.FLIM $6c Find window limits
IOP.SVPW $6d Partial window save
IOP.RSPW $6e Partial window restore
IOP.SLNK $6f Set linkage block
IOP.PINF $70 Information enquiry
IOP.RPTR $71 Read pointer
IOP.RPXL $72 Read pixel at x,y
IOP.WBLB $73 Write blob at x,y
IOP.LBLB $74 Write line of blobs
IOP.WSPT $76 Write sprite at x,y
IOP.SPLM $79 Set pointer limits
IOP.SPRY $77 Spray pixels in blob
IOP.OUTL $7a Set window outline
IOP.SPTR $7b Set pointer position
IOP.PICK $7c Pick window
IOP.SWDF $7d Set window definition pointer
IOP.WPAP $6b Set wallpaper
IOP.WSAV $7e Save window area
IOP.WRST $7f Restore window area

QPTR The Pointer Environment 69

 Trap #3 D0=$6B IOP.WPAP

Set wallpaper

Call parameters Return parameters

D1 background colour (or -1) D1 last set background colour
D2 background image type D2 smashed

(0 for native, -1 for none)

A1 background image A1 preserved

Error returns :
IPAR wrong colour mode
IMEM not enough memory for wall paper.

 This version of the Pointer Environment handles background images (wallpaper)
exclusively in the current display mode and screen size (D2 must be -1). This also implies
that there is no real point in specifying a colour if an image is given. The colour must either
be a 24 bit colour (msbits) or a QL stipple.

QPTR The Pointer Environment 70

IOP.FLIMTrap #3 D0=$6C

Find window limits

Call parameters Return parameters

D1 D1 preserved
D2 0 D2 preserved
D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
A1 pointer to result area A1 preserved
A2 A2 preserved

A3+ all preserved

Error returns:

ICHN channel not open
IPAR D2 <> 0

This call finds the limits of where a window's outline may be set by a call to IOP.OUTL -
setting the outline outside this will give an "out of range" error, setting it within this area will
not, unless the window's primary is moved after the call to IOP.FLIM. A1 points to a four-
word area of memory into which the limits are returned in the usual X-size, Y-size, X-origin,
Y-origin format. These are absolute co-ordinates. A primary is limited to the whole screen
area, a secondary to its primary's outline.

QPTR The Pointer Environment 71

IOP.SVPWTrap #3 D0=$6D

Save part window

Call parameters Return parameters

D1 x,y start of block in area D1 address of save area
D2 0 or x,y size of save area D2 preserved
D3.w
timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
A1 size/start of window block A1 preserved
A2 address of save area (D2=0) A2 preserved

A3+ all preserved

Error
returns:

ICHN channel not open
ORNG block is not in window or save area
IME
M

no room to set up save area (D2=0
only)

This routine saves part of the contents of a window into a save area in memory. The size
and position of the block to be saved are passed in a 4-word definition block pointed to by A1
(c.f. IOP.FLIM). The pixel position in the save area to which the block should be saved is
passed in D1. If D2<>0 then a new save area is set up, whose size in pixels is given in D2:
otherwise the area pointed to by A2 is used. The routine allows the use of bit images larger
than the 512x256 limit imposed by the QL's hardware.

QPTR The Pointer Environment 72

IOP.RSPWTrap #3 D0=$6E

Restore part window

Call parameters
Return
parameters

D1 x,y start of block in area D1 preserved
D2 <>0 to keep save area D2 preserved
D3.w timeout D3 preserved

D4+
all
preserved

A0 window channel ID A0 preserved
A1 size/start of window block A1 preserved
A2 address of save area A2 preserved

A3+
all
preserved

Error returns:

ICHN channel not open

ORNG
block is not in window or save
area

This routine restores part of a save area into a block in a window. Optionally the save
area may be returned to the common heap. This routine complements the IOP.SVPW
routine.

QPTR The Pointer Environment 73

IOP.SLNKTrap #3 D0=$6F

Set Bytes in Linkage Block

Call parameters Return parameters

D1.w position in linkage to set D1 preserved
D2.w number of bytes to set D2 preserved
D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
A1 pointer to data to set A1 address of linkage block
A2 A2 preserved

A3+ all preserved

Error returns:

ICHN channel not open

This routine sets bytes in the pointer linkage block (i.e. the pointer device driver defini-
tion block, see keys_con). It can also be used to get the address of the linkage block by set-
ting D2 to 0 on entry.

QPTR The Pointer Environment 74

IOP.PINFTrap #3 D0=$70

Get Pointer Information

Call parameters Return parameters

D1 D1.l pointer version (n.nn)

D2 D2 preserved
D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved

A1 A1 window manager vector

A2 A2 preserved

A3+ all preserved

Error returns:

ICHN channel not open

IPAR no pointer interface installed

The version number is a four byte ASCII string e.g. '1.15'. The Window Manager vector
contains the entry points for the upper level routines. For example, to call the routine at
vector address $08 the following code may be used:

MOVEQ #$70,D0 find entry point vector
MOVEQ #-1,D3
MOVE.L CHAN_ID(A5),A0 set our own channel ID
TRAP #3
TST.L D0 is there an interface?
BNE OOPS ... no
MOVE.L A1,D0 is there a Window Manager?
BEQ OOPS ... no
JSR $08(A1) call vectored routine $08

QPTR The Pointer Environment 75

IOP.RPTRTrap #3 D0=$71

Read pointer

Call parameters Return parameters

D1.l x,y pointer coordinates D1 x,y pointer coordinates
D2.l termination vector D2 preserved
D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
A1 pointer to pointer record A1 preserved
A2 A2 preserved

A3+ all preserved

Error returns:

ICHN channel not open

The coordinates passed (in D1) to the trap are used to check whether the pointer has
moved since the last call. Both the call and return parameters are in screen, not window,
coordinates.

The termination vector (in the LSB of D2.L) is used to determine which events will cause
a "complete" return from the call, and it corresponds to the least significant byte of the event
vector:

bit 0 key or button stroke in window / window resize
bit 1 key or button pressed (subject to auto repeat)
bit 2 key or button up in window
bit 3 pointer moved from given coordinates in window
bit 4 pointer out of window
bit 5 pointer in window
bit 6 pointer hit edge of screen

bit 7 window request

If both bit 4 and bit 5 are set, then the pointer call will always return immediately, even if
the window is locked!

Bits 7 is used to request a pointer "hit" regardless of whether the pointer is inside or
outside the window. This call must be made with infinite timeout. While such a request is
pending in the top window, all windows are locked and only the top window will get the "hit".
If bit 7 is set then all bits other than bits 0 and 1 should be zero. The pointer sprite will be set
according to the status of bits 0 and 1. If bit 0 is set then the move window sprite will be
used; if bit 1 is set then the window change size sprite is used; otherwise the empty window
sprite will be used.

On SMSQ/E system, the upper (MS) byte of the termination long word contains possible job
events on which the call is to return: each bit of that byte corresponds to a job event. Note
that while all pointer events that have occurred since the call are filled into pt_pevnt in the
pointer record, only those job events (including pending events) that actually caused the
return are filled into pt_jevnt.

QPTR The Pointer Environment 76

The pointer record is 24 bytes long:

00 long ID of window enclosing the pointer
04 word sub-window enclosing pointer (or -1)
06 word x pixel coordinate of pointer within (sub-)window
08 word y pixel coordinate of pointer within (sub-)window
0a byte 0=no keystroke <>0 key or button code
0b byte 0=no key down <>0 space or button depressed
0c long event vector all zero except LS Byte
10 4 words (sub-)window definition (size, origin)

To determine the window that a pointer is in, the Pointer Interface scans the pile of
primary windows looking for the first window whose hit area the pointer is in. If that window
has a window definition list and the pointer is outside the main window definition (i.e. it is
pointing to the border) then the pointer is considered to be outside all windows. If the window
does not have a definition list and the pointer is outside the current window area (set by
SD.WDEF), then the pointer is also considered to be outside all windows.

If the pointer is not in a window, the conventional ID -1 is returned instead of an actual ID
(note that as a negative "tag" is possible, the second word of the ID should be checked to
find out if the channel number is negative). In this case, the pointer coordinates will be
relative to the display origin.

If the pointer is within a sub-window of the window (as defined by a IOP.SWDF call) then
the x,y coordinates in the pointer record will be relative to the origin of sub-window.
Otherwise, the sub-window number will be -1 and the x,y coordinates will be relative to the
main window. If there is no window definition list, then the x,y coordinates in the pointer
record will be relative to the origin of the current window definition. In either case, the
definition of the window or sub-window is put into the end of the pointer record.

For a button on a pointer device the code is the button number. For a keypress on the
keyboard, the code is the extended ASCII code of the character.

QPTR The Pointer Environment 77

IOP.RPXLTrap #3 D0=$72

Read pixel colour

Call parameters Return parameters

D1.l x,y coordinate D1.l new position colour
D2.l scan key scan colour D2 preserved
D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
A1 A1 preserved
A2 A2 preserved

A3+ all preserved

Error returns:

ICHN channel not open
ORNG x, y is not in window
IPAR display is not a QL display

key bit meaning
31 set => scan required
19 set => scan until same colour: else scan to different
18/17 00=scan up, 01=scan down, 10=scan left, 11=scan right
16 set => compare with given colour, else with start colour

The x,y coordinates are relative to the current window area set by SD.WDEF. If no scan
is required (D2..31=0) then the colour of the specified pixel is returned in D1.w. If a scan is
required then it may proceed from the given start pixel co-ordinates in one of four possible
directions, terminating when a pixel of the same/a different colour to the given colour/colour
of the pixel at the start position is found. If the scan reaches the edge of the window before a
pixel of the required colour is found then the co-ordinate returned in the high word of D1 is
set to -1. Since the scan is in either the x or the y direction, the y or x co-ordinate of the
termination pixel is the same as that of the start pixel.

Please note that this TRAP does NOT work on higher colour drivers in SMSQ/E (i.e.
anything other than the original QL colours) and will return error IPAR in D0.

QPTR The Pointer Environment 78

IOP.WBLBTrap #3 D0=$73

Write a blob

Call parameters Return parameters

D1.l x,y coordinate D1 preserved
D2 0 D2 preserved
D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
A1 pointer to blob definition A1 preserved
A2 pointer to pattern definition A2 preserved

A3+ all preserved

Error returns:

ICHN channel not open
ORNG x, y is not in window
IPAR bad data structure

IOP.LBLBTrap #3 D0=$74

Write a line of blobs

Call parameters Return parameters

D1.l x,y start coordinate D1.l x,y end coordinate
D2.l x,y end coordinate D2 preserved
D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
A1 pointer to blob definition A1 preserved
A2 pointer to pattern definition A2 preserved

A3+ all preserved

Error returns:

ICHN channel not open
IPAR bad data structure

The write blob call writes a blob of the pattern into the window, and the line of blobs a line
from the start to (but not including) the end coordinates, which are relative to the current
window area set by SD.WDEF. A blob which falls wholly or partially out of the window
causes an error in IOP.WBLB, and is ignored in IOP.LBLB.

This version checks the form of the blob and pattern against the current screen mode,
and searches along each chain until it finds a definition with the appropriate form. If it
encounters the end of the chain or an odd pointer before this, a "bad parameter" error will be
returned.

QPTR The Pointer Environment 79

IOP.WSPTTrap #3 D0=$76

Write a sprite

Call parameters Return parameters

D1.l x,y coordinate D1 preserved
D2 D2 preserved
D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
A1 pointer to sprite definition A1 preserved
A2 A2 preserved

A3+ all preserved

Error returns:

ICHN channel not open
ORNG x, y is not in window
IPAR bad data structure

The write sprite call writes a sprite into the window. This version of the Pointer Interface
cannot handle sprites which partially overlap the edge of the window.

The x,y coordinates are relative to the current window area set by SD.WDEF.

This version checks the form of the sprite against the current screen mode, and searches
along the chain until it finds a definition with the appropriate form. If it encounters the end of
the chain or an odd pointer before this, a "bad parameter" error will be returned.

The internal sprites may be used by passing a small number in A1, rather than a pointer:

Name Number Sprite
SP.ARROW $00 arrow
SP.LOCK $01 padlock
SP.NULL $02 empty window
SP.MODE $03 wrong mode (4 or 8)
SP.KEY $04 keyboard entry
SP.BUSY $05 no entry sign
SP.WMOVE $06 window move
SP.WSIZE $07 window change size
SP.WMOVEP $08 mouse wdw move
SP.WSIZEP $09 mouse wdw resize
SP.SLEEP $0A sleep
SP.WAKE $0B wake
SP.F1 - SP.F12 $0C-$17 F1 - F12
SP.CF1 -
SP.CF12 $17-23 Control F1 -F12
SP.CURSOR $24 cursor
SP.CURFLASH $25 flashing cursor*

* note that a flashing cursor sprite only flashes if it is used as a cursor, not if it is used
anywhere else in the window.

QPTR The Pointer Environment 80

QPTR The Pointer Environment 81

IOP.SPRYTrap #3 D0=$77

Spray pixels in blob

Call parameters Return parameters

D1.l x,y coordinate D1 x,y coordinate
D2 number of pixels to spray D2 preserved
D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
A1 pointer to blob A1 preserved
A2 pointer to pattern A2 preserved

A3+ all preserved

Error returns:

ICHN channel not open
ORNG x, y is not in window

This call sprays the number of pixels required into a window: the colour of each is
determined by the pattern, and each falls on a non-transparent part of the blob. If the number
of pixels required exceeds the number of pixels in the blob the call will terminate with no
error, and may duplicate the effect of a call to IOP.WBLB: but there is no guarantee that one
or more calls to IOP.SPRY with the same blob in the same position will eventually fill in the
entire blob. This trap is not implemented in high colours and return err.ipar!

 Trap #3 D0=$79 IOP.SPLM

Set pointer limits

Call parameters Return parameters

D1 pointer x limit D1 preserved
D2 pointer y limit D2 preserved

Error returns :
None

This (temporarily) sets the pointer limits. Unless you know exactly what you are doing,
this should not be set by an applications programmers.

QPTR The Pointer Environment 82

IOP.OUTLTrap #3 D0=$7A

Set Window Outline

Call parameters Return parameters

D1.l x,y shadow widths D1 ???
D2 1 to keep contents, else 0 D2 preserved
D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
A1 pointer to window definition block A1 preserved
A2 A2 preserved

A3+ all preserved

Error returns:

ICHN channel not open
ORNG window not within screen

This call defines a window's outline, its hit area and shadow. A1 points to a normal
window definition block (4 words: x,y sizes, x,y origin) which defines the window hit area. The
shadow widths area added to this to make the window outline, and the shadows are drawn. It
is the use of this call which indicates to the Pointer Interface that the window concerned is a
genuine managed window. All subsequent SD.WDEF calls to this window will be checked
against the window hit area instead of the total display area.

For secondary windows, IOP.OUTL also saves the area beneath the window, avoiding
the need for explicit IOP.WSAV and IOP.WRST calls.

If the key in D2 is set to 1 then the contents of the window will be preserved, allowing
applications to move a window with one call to IOP.OUTL: note that the size must stay the
same for this to work properly!

QPTR The Pointer Environment 83

IOP.SPTRTrap #3 D0=$7B

Set pointer position

Call parameters Return parameters

D1.l x,y coordinate D1 x,y coordinate
D2.b origin key D2 preserved
D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
A1 A1 preserved
A2 A2 preserved

A3+ all preserved

Error returns:

ICHN channel not open
ORNG x, y is not in window

This call sets the current pointer position. It should be used with discretion as sudden
pointer position changes could prove to be very unpleasant for the user.

The origin key should be zero if the pointer coordinates in D1 are absolute. A key of -1
will set the position relative to the current window definition. A key of 1 will set it relative to
the hit area. D1 is always set to absolute coordinates on return.

QPTR The Pointer Environment 84

IOP.PICKTrap #3 D0=$7C

Pick window

Call parameters Return parameters

D1.l job ID or key D1 ???
D2 0 or k.wake D2 preserved
D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
A1 A1 preserved
A2 A2 preserved

A3+ all preserved

Error returns:

ICHN channel not open
IJOB invalid job ID

If a job ID is given, the primary window owned by that job will be "picked" to the top of the
pile. If the key is given as -1, then the bottommost job will be picked to the top. If the key is
given as -2, the window is marked "unlockable". If D2 is set to k.wake, a wake event is sent
after the pick. This call will work even if the channel given is locked: it should be used very
sparingly, if at all.

QPTR The Pointer Environment 85

IOP.SWDFTrap #3 D0=$7D

Set Sub-Window Definition List

Call parameters Return parameters

D1 D1 preserved
D2 D2 preserved
D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
A1 A1 preserved
A2 A2 preserved

A3+ all preserved

Error returns:

ICHN channel not open

This call is used to set the pointer to the sub window definition list. This is a sub-set of the
window working definition. A1 points to a long word pointer to a table of pointers to sub-
window definitions. This pointer may be zero. It is followed by a sub-window record for the
main part of the window. The pointers to sub-window definitions are long words, the list is
terminated by a zero long word. Each pointer points to a sub-window record.

A sub-window record specifies the area and, if desired, a pointer to a sprite to be used as
pointer when the pointer is in that sub-window. The structure of a sub-window record is as
follows:

sw_xsize $00 word (sub-)window x size (width) in pixels
sw_ysize $02 word (sub-)window y size (height) in pixels
sw_xorg $04 word x origin of (sub-)window
sw_yorg $06 word y origin of (sub-)window
sw_wattr $08 4 words (sub-)window attributes in 4 words - spare,

border width, border colour, paper colour
sw_psprt $10 long pointer to pointer sprite for this (sub-)window

QPTR The Pointer Environment 86

IOP.WSAVTrap #3 D0=$7E

Window Area Save

Call parameters Return parameters

D1.l length of save area (or 0) D1 preserved
D2 D2 preserved
D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
A1 address of save area (D1>0) A1 preserved
A2 A2 preserved

A3+ all preserved

Error returns:

ICHN channel not open
IMEM out of memory

IOP.WRSTTrap #3 D0=$7F

Window Area Restore

Call parameters Return parameters

D1 D1 preserved
D2.b <>0 to keep save area D2 preserved
D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
A1 address of save area (or 0) A1 preserved
A2 A2 preserved

A3+ all preserved

Error returns:

ICHN channel not open

These routines save and restore bit images from and to a window's hit area. The memory
to be used may be supplied by the application (D1 or A1 non-zero) or allocated internally.
The former option is preferable, as the internal save area pointer may already be in use; it is
used to implement pull-down windows, for instance.

QPTR The Pointer Environment 87

Window Manager

The window management routines are supplied to do all of the most common operations
in handling pull-down movable and resizable windows and menus within these windows. The
actions of the window management routines are controlled by data structures supplied by the
application.

Symbols for the vectors are defined in the keys_wman file, which may be INCLUDEd in
any program which makes use of these routines.

In many cases, the window data structures will have pointers to application supplied
action routines. This effectively means that the application code calls the window manager
routines, which, in turn, call application routines. To simplify the application code, the window
manager routines treat certain registers in a uniform way:

When the window manager routines call an application routine, A2 is set to point to the
window manager vector, while A5 and A6 are not used or modified by any window manager
routines. Thus A5 and A6 can be used by the application routines as pointers to internal data
structures.

There are four distinct phases involved in setting up and using a managed window. First
the window definition is copied and expanded into the working definition. Next the working
definition is used to open an appropriate window. Then the window contents are filled in.
Finally, the window is accessed via a call to read the pointer.

Before starting to set up a window, the application must have initialised the window status
area. This is a work area which is accessed by both the window management routines and
the application program. It contains such useful information as the current item, the panning
and scrolling state of the application sub-windows and the status of all the items within all the
(sub-)windows.

The start of the status area holds pointers to the window definitions. Often the initial state
of the rest of the status area will be mostly zero. Where pull-down windows are used, the
status area will usually be maintained from one use of the window to the next time the
window is set up to be used

QPTR The Pointer Environment 88

Setup Routines

The routine WM.SETUP may be called to transfer a window definition to the window
working definition. It is possible for an application to set up its own working definition, but it is
easier to use the window manager routine.

The window definition is a fixed skeleton of the appearance of the window, as in practice
the window contents are liable to change. This variability is catered for in two ways. Firstly,
the application must supply its own routine to transfer the definition of each application sub-
window: for standard format menus, the application sub-window setup routine will just be a
call to WM.SMENU. Secondly, after the working definition has been set up, it may be
modified by the application. In particular, if there is a menu within the window which has a
variable object list, then the object lists should be set up by the application code after the
main part of the working definition has been set up by WM.SETUP.

Depending on the size of window required, one of a number of layouts will be selected
from the list provided in the window definition. The WM.FSIZE routine may be used to
determine which will be selected: the result of this might, for instance, be used to allocate the
correct amount of memory for the working definition.

In the next phase the window is initialised. For the primary window, the routine
WM.PRPOS will position and set up a primary window. For secondary windows, the routine
WM.PULLD should be called to pull down a window within the primary window area. These
routines will try to position the window so that the pointer will point to the current item in the
window without being moved. If this is not possible, then the pointer itself will be moved.
WM.PRPOS and WM.PULLD both set the window border and clear the window. After the
window has been initialised, fancy borders or other adornments may be added by the
application.

The window should now be filled in. Most of the operations to fill in the window will be
performed by the routine WM.WDRAW. However, the application sub-windows are initialised
but not filled in. This is left to the application code. If the sub-window is a standard format
menu, then the menu drawing routine WM.MDRAW may be called to fill in the sub-window.

In the final phase, the routine WM.RPTR may be called to read the pointer. This routine
will return with the event vector in D2. This will indicate what actions (if any) are required to
be done. Any "hits" on loose menu items or items within a menu sub-window will have been
processed within the window management level by the hit and action routines supplied by
the application.

If a "hit" on a loose menu item, or a sub-window menu item, requires the window to be
changed (moved, squashed, stretched, thrown away etc.), then the action routine should set
the appropriate bit in the event vector and return to the application code. This ensures that
the application will always have control over its own windows.

QPTR The Pointer Environment 89

WM.FSIZEVector $54

Find size of layout

Call parameters Return parameters

D1 x,y size (or 0) D1 actual x,y size
D2 D2.w layout number

D3+ all preserved

A0 A0 preserved
A1 A1 preserved
A2 A2 preserved
A3 pointer to window defn A3 preserved
A4 A4+ all preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

Not set

If this routine is required it will usually be called before WM.SETUP to determine which of
the possible layouts WM.SETUP will select from the repeated part of the window definition. If
the re-quired size is given as 0 then the default size will be used. The actual size that the
window will be is returned in D1: this will be the same as that passed if the layout selected is
scalable, otherwise it will be smaller in one or both dimensions. It will be larger if the size
requested was smaller than the smallest possible layout.

The layout number is returned in D2: this will be zero for the first layout, 1 for the second
and so on. This may be used to allocate the correct amount of memory for the working
definition (the following code assumes you have set the size required and pointer to the
window definition):

JSR WM.FSIZE(A2) find out which layout
ADD.W D2,D2
ADD.W D2,D2 turn into offset
MOVE.L WTAB(PC,D2.W),D1 find space in table
JSR MEMGET(PC) and allocate it
...
WTAB
DC.L WWA.MENU space for layout 0...
DC.L WWB.MENU ...and layout 1

QPTR The Pointer Environment 90

WM.SETUPVector $04

Setup a managed window

Call parameters Return parameters

D1.l x,y size (or 0, or -1) D1.l x,y size
D2+ all preserved

A0 window channel ID A0 preserved
A1 pointer to status area A1 preserved
A2 A2 preserved
A3 pointer to window defn A3 preserved
A4 pointer to working defn A4+ all preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

Always returns OK

The managed window setup routine WM.SETUP is called to transfer information from the
window definition to the window working definition. It is the responsibility of the applications
code to provide an area of memory large enough to accommodate the window working
definition. This may seem unfair, but only the application will be able to determine the
maximum space required in this area. It is also the responsibility of the applications code to
make sure the window definition itself is set up correctly – this is not checked by
WM.SETUP.

If the window size is given as 0, then the default window size will be used. If the window
size is given as -1, then the window size and position in the working definition will not be
changed. This is to allow re-use of a window (see WM.UNSET and WM.WRSET).

The window size is used to determine the window layout and scaling factors. If no
definition can be found that is small enough to accommodate the given window size, than the
size of the window in the last definition in the list will be used.

Where possible, WM.SETUP will set up complete structures. If there are empty pointers
or structures in the window definition, these will be transferred to the working definition as
empty pointers or structures. When it comes to transferring the definitions of application sub-
windows to the working data structure, the basic sub-window definition is transferred, and
then an application supplied routine is called to setup the rest of the sub-window working
definition.

To simplify calls back into the window manager routines, A2 will be set to point to the
window manager vector, while A5 and A6 remain unused since the call to WM.SETUP.

In the case of a standard menu, the application supplied routine will just be a branch to
the standard menu setup routine

JMP WM.SMENU(A2) setup standard menu

QPTR The Pointer Environment 91

Vector $04 WM.SETUP Set Up Working Definition

set pointer to window status area in working definition
set pointer to window definition in window status area
set no current item in window status area
set window mode in status area
set channel ID in working definition
set pointer to pointer record
find definition to suit size
set x,y scaling factors
set window attributes block
set pointer to pointer sprite
set loose menu item attributes block
set help pointer
set pointer to information sub-window list
for all information sub-windows

set true size and origin
set window attributes
set pointer to information object list

set number of information sub-windows
for all information sub-windows

set end of list
for all information objects

set object size and position
set object type and attributes
set object pointer

set number of information objects
set end of list
set pointer to loose menu item list
for all loose menu items

set object size and position
set object justification rule
set object type and selection keystroke
set pointer to object and item number
set pointer to action routine

set number of loose menu items
set end of loose menu item list
set application sub-window list address
set sub-window sprite list address to same
for all application sub-windows

set application sub-window pointer list (implicit end=0)
set number of application sub-windows
for all application sub-windows

set true size and origin
set window attributes
set pointer to pointer sprite
set pointers to sub-window draw and hit routines
set pointer to sub-window control routine
set selection keystroke
for x and y

set maximum number of sections
if non-zero

set pointers to part-window control blocks
copy all control attributes

else
preset control section of menu definition to 0

call application sub-window setup routine

QPTR The Pointer Environment 92

The call parameters to the application sub-window setup routine are the same as the
parameters to the standard menu setup routine. The registers A3 and A4 are used as
running pointers to the window definition, and the working definition respectively. On calling
the application sub-window setup routine A3 points after the application sub-window basic
definition, or after the sub-window control definition (if present). A4 points to the next unset
location in the window working definition. On exit from the application sub-menu setup, A4
should be updated to point to the next unset location in the window working definition. A3
need not be updated or preserved.

The window scaling parameters D1 and D2 are the amount by which the window size
exceeds the minimum in the x and y directions. These are words.

Application Sub-Window Setup Routine

Call parameters Return parameters

D1.w x scaling D1 preserved
D2.w y-scaling D2 preserved

D3+ all preserved

A0 A0 ???
A1 pointer to status area A1 ???
A2 window manager vector A2 ???
A3 pointer to sub-window defn A3 ???
A4 pointer to working defn A4 updated
A5 not used by any routine A5 used as required
A6 not used by any routine A6 used as required

Error returns:

D0 and the status register must be set

A1 contains the pointer to the status area which was passed to WM.SETUP. To simplify
calls back into the window manager routines, A2 is set to point to the window manager
vector, while A5 and A6 remain unused since the call to WM.SETUP. All of A0 to A3 may be
treated as volatile.

QPTR The Pointer Environment 93

WM.SMENUVector $08

Setup standard sub-window menu

Call parameters Return parameters

D1.w x scaling D1 preserved
D2.w y-scaling D2 preserved

D3+ all preserved

A0 A0 preserved
A1 pointer to status area A1 preserved
A2 A2 preserved
A3 pointer to sub-window menu defn A3 updated to after menu defn
A4 running pointer to working defn A4 updated to next unset location
A5 not used by any routine
A6 not used by any routine

Error returns:

Always returns OK

Vector $08 WM.SMENU Set Up a Standard Menu Sub-Window

set pointer to menu status block
set item attributes
set number of rows and columns
set pointers to spacing lists

copy spacing lists
(set pointers to index object lists – not implemented)

(set index object lists – not implemented)
set pointer to row list

set row pointers
set object lists

QPTR The Pointer Environment 94

Set Window Routines

The primary window position routine WM.PRPOS is called to position the primary window
for an application. The position of the window is determined by the current pointer position in
conjunction with the "origin" of the window (specified in the working definition) or the position
of the current menu item (specified in the window status area). This ensures that the pointer
will move as little as possible when the window is opened, while keeping the window within
the limits of the display. A window is always positioned such that its X origin is a multiple of
four, and its Y origin is a multiple of two: this ensures that any stipples used in the window
are always "in phase".

The routine WM.PULLD is the equivalent call for a secondary window. This has the same
effect as the primary open call, but the window pulled down is limited to be within the primary
window area.

The routine WM.UNSET is called to unset the sub-window definition pointer in the screen
driver so that a working definition may be removed or replaced.

The routine WM.WRSET is called to reset a primary or pull down window so that the
same window may be used with a new working definition. N.B. see WM.UNSET

WM.PRPOSVector $0C Primary Window Positioning
Vector $10 Pull Down Window Open WM.PULLD
Vector $14 Window Unset WM.UNSET
Vector $18 Window Reset WM.WRSET

Call parameters Return parameters

D1 window "origin" or -1.l D1+ all preserved

A0 A0 channel ID of window
A1-A3 A1-A3 preserved
A4 pointer to working defn A4+ all preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

Any I/O sub system errors

If an "origin" position is given, this (in absolute screen coordinates) is used, in place of the
current pointer position, to position the window.

Vector $10 WM.PULLD Pull Down a Window

open console and fill in its channel ID
set "pulled down" flag
... then WM.PRPOS

QPTR The Pointer Environment 95

Vector $0C WM.PRPOS Position a primary window

get window channel ID from working definition
find current pointer position and save it
calculate window origin
set window outline and shadow (saves pull down window area) adjust pointer position
adjust window definition block to exclude border
... then WM.WRSET

Vector $18 WM.WRSET

draw border and clear window set sub-window definition pointer

Vector $14 WM.UNSET

unset sub-window definition pointer
if window was pulled down

restore area covered up
restore old pointer position

QPTR The Pointer Environment 96

Drawing Routines

Entire window drawing routine

When the working definition has been set up and the window opened, the general
purpose routine WM.WDRAW is called to draw the entire window contents. The information
windows are set up and the information objects are drawn. Then the loose menu items are
drawn. Finally each application sub-window is set up, bordered and cleared and the
application sub-window draw routine is called to fill in the contents and the index bars.

WM.WDRAWVector $1C

Draw window contents

Call parameters Return parameters

D1+ all preserved

A0 A0 channel ID of window
A1-A3 A1-A3 preserved
A4 pointer to working defn A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

Any I/O sub system errors

Vector $1C WM.WDRAW Draw Window Contents

for all information sub-windows
set sub-window size, position and border
set sub-window background
clear sub-window
for each object

draw in position
for all menu items

draw in position
for all application sub-windows

set sub-window size, position and border
set sub-window background
clear sub-window
call application sub-window draw routine

QPTR The Pointer Environment 97

The application sub-window draw routine is called to draw the contents and, if required,
the indices for the sub-window. When it is called, the window definition (SD.WDEF) will have
been set to the sub-window outline. The application routine is passed the pointer to the start
of the working definition in A4, and the pointer to the sub-window definition in A3. The sub-
window definition in the window status area will be set and D7 holds the origin of the window,
not the sub-window. The pointer to the window status area can be found in the working
definition which is pointed to by A4.

Application Sub-Window Draw Routine

Call parameters Return parameters

D1+ all preserved
D7.l x,y origin of window D7 preserved

A0 window channel ID A0 preserved
A1 A1 ???
A2 window manager vector A2 ???
A3 pointer to sub-window defn A3 ???
A4 pointer to working defn A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

D0 and the status register must be set

To simplify calls back into the window manager routines, A2 is set to point to the window
manager vector, while A5 and A6 remain unused since the call to WM.WDRAW.

QPTR The Pointer Environment 98

Part window drawing routines

There are four window management routines to help drawing or redrawing parts of
windows. These routines may be called from the application sub-window drawing routines
(called from WM.WDRAW) or from the action or control routines (called from WM.RPTR and
WM.MHIT).

These are the standard menu drawing routine, WM.MDRAW, the index drawing routine,
WM.INDEX, the sub-window definition routine, WM.SWDEF, and the loose menu item
drawing routine, WM.LDRAW.

WM.MDRAWVector $20

Standard Menu Drawing

Call parameters Return parameters

D1-D2 all preserved
D3.b 0 all, -1 selective D3+ all preserved

A0 window channel ID A0 channel ID of window
A1 A1 preserved
A2 A2 preserved
A3 pointer to sub-window defn A3 preserved
A4 pointer to working defn A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

Any I/O sub system errors

If D3 is set to -1 for the call to WM.MDRAW, then only those items whose status has the
change bit set (WSI..CHG) will be drawn. Note that the status flags are not modified by this
routine; this is because an item may consist of more than on object, or an object may be
visible in more than one section, so the status flags need to be preserved throughout the
routine. The application will therefore need to clear any change bits that are set after this
routine has been called.

Vector $20 WM.MDRAW Draw Standard Menu in Sub-Window

set sub-window definition
for all row sections

for all rows visible within section
for all column sections

 for all columns visible within section
if draw all or WSI..CHG set in status

draw object in colours appropriate to status

QPTR The Pointer Environment 99

WM.INDEXVector $24

Standard Sub-Window Index

Call parameters Return parameters

D1+ all preserved

A0 window channel ID A0 channel ID of window
A1 A1 preserved
A2 A2 preserved
A3 pointer to sub-window defn A3 preserved
A4 pointer to working defn A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

Any I/O sub system errors

Vector $24 WM.INDEX Draw Sub-Window Indices

set main window definition
if column index

for all column sections
for all columns visible in section

draw column index object
if row index

for all row sections
for all rows visible in section

draw row index object
there is no drawing of indexes in current versions of the Pointer Environment

if pannable
for all column sections

draw pan bar
if scrollable

for all row sections
draw scroll bar

set sub-window definition
if pannable

for all column sections
for all row sections

draw pan arrows
if scrollable

for all row sections
for all column sections

draw scroll arrows

QPTR The Pointer Environment 100

WM.UPBARVector $70

Update pan/scroll bars

Call parameters Return parameters

D0 x,y section to update D0 preserved
D1+ all preserved

A0 window channel ID A0 channel ID of window
A1 A1 preserved
A2 A2 preserved
A3 pointer to sub-window defn A3 preserved
A4 pointer to working defn A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

Any I/O sub system errors

This routine allows re-drawing of a given section scroll or pan-bar. If you set D0 to -1,
nothing is updated. The first call to draw bars and arrows should be WM.INDEX, any further
update of the bar positions should be done with WM.UPBAR. This saves a lot of time as only
the part which (possibly) has been modified is re-drawn. There is also no need to re-draw the
arrows (if they exists) after a scroll or pan operation.

QPTR The Pointer Environment 101

WM.SWDEFVector $28

Set Sub-Window Definition

Call parameters Return parameters

D1+ all preserved

A0 window channel ID A0 channel ID of window
A1 A1 preserved
A2 A2 preserved
A3 pointer to sub-window defn A3 preserved
A4 pointer to working defn A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

Any I/O sub system errors

This routine may be used to reset the definition of any application or information sub-
window.

Vector $28 WM.SWDEF Set Sub-Window Definition
find sub-window definition
make absolute screen coordinates
set window definition with zero border width

QPTR The Pointer Environment 102

WM.LDRAWVector $2C

Loose Menu Item Drawing

Call parameters Return parameters

D1-D2 all preserved
D3.b 0 all, -1 selective D3+ all preserved

A0 window channel ID A0 channel ID of window
A1 A1 preserved
A2 A2 preserved
A3 A3 preserved
A4 pointer to working defn A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

Any I/O sub system errors

If D3 is set to -1 for the call to WM.LDRAW, then only those items whose status has the
change bit set (WSI..CHG) will be drawn. This routine is normally used when a change in
status of one loose item affects the status of others, or when a loose item's object has been
changed. Note that the status flags are not modified by this routine; this is because an item
may consist of more than on object, or an object may be visible in more than one section, so
the status flags need to be preserved throughout the routine. WM.LDRAW does, however,
clear the change bit in the status area of every item which is redrawn.

Vector $2C WM.LDRAW Draw Loose Menu Items

set main-window definition
for all loose menu items

if draw all or WSI..CHG set in status
draw object in colours appropriate to status

QPTR The Pointer Environment 103

WM.IDRAWVector $3C

Draw information sub-windows

Call parameters Return parameters

D1-D2 all preserved
D3 bits clear to redraw window D3+ all preserved

A0 A0 channel ID of window
A1 A1 preserved
A2 A2 preserved
A3 pointer to sub-window defn A3 preserved
A4 pointer to working defn A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

Any I/O sub system errors

This routine allows an application to re-draw any of the first 32 information sub-windows:
if bit N of D3 is clear then information sub-window N will be cleared and re-drawn. This
routine will normally only be used when the information objects in a window have been
changed.

for information sub-window 0..31
if bit N clear in D3

set sub-window definition
draw sub-window border
clear sub-window
for all objects in sub-window

draw object

QPTR The Pointer Environment 104

Set Window To Partial Areas Routines

There is a set of four vectors used to set the window to an area used by an information
sub-window, loose menu item, application sub-window or section of application sub-window.
In each case D1 specifies the number of the entity (not to be confused with a menu item
number) and D2 specifies the colour(s). If D2 is a negative long word, then only the window
area will be set, otherwise these routines will set the ink, paper and strip colours and the
"over" state to 0 as well as setting the area.

WM.SWINFVector $58

Set window to info window

Call parameters Return parameters

D1.w info window number D1 preserved
D2.l ink colour / no reset D2 preserved

D3+ all preserved

A0 A0 channel ID of window
A1 A1 pointer to window in work defn
A2 A2 preserved
A3 A3 preserved
A4 pointer to working defn A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

Any I/O sub system errors
ORNG Info window number out of range

WM.SWLITVector $5C

Set window to loose item

Call parameters Return parameters

D1.w loose item number D1 preserved
D2.l item status / no reset D2 preserved

D3+ all preserved

A0 A0 channel ID of window
A1 A1 pointer to item in work defn
A2 A2 preserved
A3 A3 preserved
A4 pointer to working defn A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

Any I/O sub system errors
ORNG Item number out of range

QPTR The Pointer Environment 105

WM.SWAPPVector $60

Set window to application sub-window

Call parameters Return parameters

D1.w application window number D1 preserved
D2.l ink colour / no reset D2 preserved

D3+ all preserved

A0 A0 channel ID of window
A1 A1 pointer to window in work defn
A2 A2 preserved
A3 A3 preserved
A4 pointer to working defn A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

Any I/O sub system errors
ORNG Application window number out of range

WM.SWSECVector $64

Set window to application sub-window section

Call parameters Return parameters

D1.l x,y section numbers D1 preserved
D2.l ink colour / no reset D2 preserved

D3+ all preserved

A0 A0 channel ID of window
A1 A1 preserved
A2 A2 preserved
A3 ptr to sub-window definition A3 preserved
A4 pointer to working defn A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

Any I/O sub system errors
ORNG Application window or section number out of range

QPTR The Pointer Environment 106

Draw border around current item

WM.DRBDRVector $68

Draw border around current item

Call parameters Return parameters

D1+ all preserved

A0 channel ID of window A0 preserved
A1 window status area A1 preserved
A2 A2 preserved
A3 A3 preserved
A4 A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

Any I/O sub system errors

This routine draws a border using the current item information in the window status area.

To clear the current item, set the most significant bit of WS_CITEM and, if WS_CIACT is
clear, call WM.DRBDR, otherwise call the routine pointed to by WS_CIACT and then clear
WS_CIACT.

To set a current item, set WS_CITEM, WS_CIBRW, WS_CIPAP (to the highlight colour)
and the hit area WS_CIHIT. Then call WM.DRBDR. Finally reset WS_CIPAP to the
background colour.

QPTR The Pointer Environment 107

Access Routines

Once the window, and all its sub-windows, have been set up, the pointer may be read
using the window read pointer vector. This routine repeatedly reads the pointer, waiting for a
move or keystroke event, and calls any hit or action routines that may be required. If any bits
in the window or sub-window bytes of the event vector become set, then the routine will
return. Other window manager access routines are available to handle menus within sub-
windows and to pro-vide utility support for application sub-windows

Window Manager Read Pointer

The window manager read pointer routine (WM.RPTR) handles all the pointer movement
and keystrokes outside the sub-windows. It also does some occasional operations within
sub-windows, and traps some keystrokes before they reach the application sub-window hit
routines.

The rules governing the operation of WM.RPTR are rather complex, but are designed to
make the interface operate as close to an intuitive model as is reasonable. The operation is
complex because the interface has to be capable of handling not only menu selection by
keystroke and menu selection by pointing device, but also menu selection by cursor key and
arbitrary pointer input.

The three most important keystrokes are SPACE, which corresponds to a click on the left
mouse button, ENTER which corresponds to a click on the right mouse button and ESC.
SPACE or left click is referred to as "hit", ENTER or right click is "do". For some reason, ESC
is known as "cancel".

Current Item

One of the functions of WM.RPTR (and its menu support routine WM.MHIT) is to
maintain a current menu item. This item is outlined on the display. As long as the pointer
remains within the "hit area" of the item, the item will remain outlined. As soon as the pointer
moves out of the hit area, then the outline will be removed. If the current item is "hit", then, if
it is available, the status is toggled, and the appropriate action routine called. "do" is similar
to "hit" except that if the item is available the status is set to selected before the action
routine is called.

Alternatively, items can be selected on a single keystroke. This has the effect of moving
the pointer to a new current item, and then causing a "hit". Since the "hit" will cause a call to
an action routine, it is possible for the application to automatically convert the "hit" to a "do"
(or a "cancel" or any other event).

From the point of view of WM.RPTR, the main window is divided into two distinct areas:
that part of the window which falls within an application sub-window, and that part not within
any application sub-window. Every window is considered to have at least some menu
operations. Some of these, e.g. HELP or DO, may be accessible from any application sub-
window.

QPTR The Pointer Environment 108

Keystroke Selection

Most keystrokes on the keyboard are treated as shorthand menu selections. The
keystroke is converted to upper case, and it is compared against the selection keystrokes
defined for the loose menu items, the selection keystrokes defined for the application sub-
windows or, in WM.MHIT, the selection keystrokes defined for the sub-window menu items.

The current version of the Window Manager allows you to underscore the character
which is the selection keystroke of a text item. The type of this item is text-position, which
means, first character is -1, second -2 and so on.

There are some keystrokes which are defined to cause window events:

• ENTER or a double click will cause a "do" event;
• ESC will cause a "cancel" event;
• F1 will cause HELP event;
• CTRL F4 will cause a MOVE window event;
• CTRL F3 will cause a change SIZE event;
• CTRL F2 will cause a WAKE event;
• CTRL F1 will cause a SLEEP event.

The treatment of these keystrokes will depend on both the organisation of the window,
and the position of the pointer.

The WM.RPTR routine is a loop reading the pointer record. Whenever there is a move or
keystroke to be processed, it checks first of all for the event keystrokes, then other
keystrokes, and if there is no keystroke, it checks whether the current item has changed.
When appropriate, it calls either a loose menu item action routine, or a application sub-
window hit routine. If, at the end of all the processing of a keystroke or move an event has
been generated, WM.RPTR will return. Otherwise it will continue to read the pointer record.

If there is a "do" event and there is a current item, then the corresponding item is selected
and the appropriate action routine is called.

If there is an event keystroke other than "do" or there is a "do" with no current item, then
the loose items are searched for a corresponding selection key. If one is found, the loose
menu item status is toggled and the action routine called. If no corresponding selection key is
found, then, unless it is a "do" or a "cancel" within an application sub-window, the appropriate
bit will be set in the event vector and the routine will return.

If there is a "do" or a "cancel" within an application sub-window and there is no "do" or
"cancel" loose menu item, then the application sub-window hit routine will be called.

If there is not an event keystroke, a check is make to see if the pointer has moved outside
the current item hit area. If it has, the current item is cleared (set negative) and the border
redrawn.

Next, if there is a keystroke, the loose menu item list will be searched for a corresponding
selection keystroke. If one is found, the item status will be toggled and then the appropriate
action routine will be called.

If the keystroke is not found in the loose menu item list then all (except the current)
application sub-windows are searched for a corresponding selection keystroke. If one is
found, the pointer is moved to the centre of the application sub-window and the sub-window
hit routine is called.

QPTR The Pointer Environment 109

If there is no keystroke, or the keystroke is not the selection keystroke for a loose menu
item or an application sub-window, then, if the pointer is within a sub-window, the hit routine
is called, or else the loose menu item list is searched to find a new current item.

On return from any loose menu item action routines, D4 is checked. If it is non zero, the
corresponding bit of the window event byte is set and WM.RPTR returns after testing D0.

On return from a sub-window hit routine the window byte of the event vector is checked. If
any bits are set, WM.RPTR returns after testing D0.

If a loose menu action routine or application sub-window hit routine returns a non-zero
condition code, WM.RPTR will return after testing D0. This can be used to force a return
without either an event or error.

The WM.RPTRT routine is similar to the WM.RPTR routine, but accepts a timeout and
checks for job events being sent to the job reading the pointer.

QPTR The Pointer Environment 110

WM.RPTRVector $30

Read Pointer

Call parameters Return parameters

A0 A0 channel ID of window
A1 A1 preserved
A2 A2 preserved
A3 A3 preserved
A4 pointer to working defn A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

Any I/O sub system errors
Any error returned by action or hit routine

Vector $30 WM.RPTR Read Pointer

repeat until window event or error
read pointer

if event keystroke
process it and call appropriate action/hit routine
next read pointer

clear current item if pointer moved out of it

if keystroke
process it and call appropriate action/hit routine
next read pointer

if in application sub-window
call hit routine
next read pointer

if new current item
set item and border

The window manager requires all application sub-windows to have hit routines. In the
case of a standard format menu in an application sub-window, this may be just a direct jump
to the WM.MHIT routine:

JMP WM.MHIT(a2) do move or hit in standard menu

QPTR The Pointer Environment 111

WM.RPTRTVector $78

Read Pointer with timeout and job events

Call parameters Return parameters

D2.b job events to return on D2 preserved
D3.w timeout D3 preserved

A0 A0 channel ID of window
A1 A1 preserved
A2 A2 preserved
A3 A3 preserved
A4 pointer to working defn A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

Any I/O sub system errors
Any error returned by action or hit routine

This routine is closely modelled in the WM.RPTR call, except that you can provide for job
events (in the LSB of D2) on which the call is also to return, and for a timeout (in D3.W).
NOTE : job events work under SMSQ/E and may not work under other OSes.

Vector $78 WM.RPTRT Read Pointer with timeout

repeat until window event, job event, timeout or error
read pointer

if event keystroke
process it and call appropriate action/hit routine
next read pointer

clear current item if pointer moved out of it

if keystroke
process it and call appropriate action/hit routine
next read pointer

if in application sub-window
call hit routine
next read pointer

if new current item
set item and border

The window manager requires all application sub-windows to have hit routines. In the
case of a standard format menu in an application sub-window, this may be just a direct jump
to the WM.MHIT routine:

JMP WM.MHIT(a2) do move or hit in standard menu

QPTR The Pointer Environment 112

Application Sub-Window Hit Routine

Call parameters Return parameters

D1 x,y pointer position D1 x,y pointer position
D2 uppercased key, -1 or 0 D2 ???

D3.w timeout for next PT.RPTR
D4 event number of keystroke D4 ???

D5+ all preserved

A0 window channel ID A0 preserved
A1 pointer to status area A1 ???
A2 window manager vector A2 ???
A3 pointer to sub-window defn A3 ???
A4 pointer to working defn A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

D0 and the status register must be set

The pointer in D1 is in absolute (not sub-window) coordinates. The uppercased
keystroke in D2 also has SPACE ($20) converted to "hit" ($01) and ENTER ($0a) converted
to "do" ($02). If D2 is -1, then the application sub-window has been "hit" by an external
keystroke.

D4 can only be 0, pt..do (16) or pt..cancel (17) when the application sub-window hit
routine is called. All other event keystrokes are handled by the routine WM.RPTR.

If a bit is set in the window byte of the event vector by a hit routine, then WM.RPTR will
return to the application. Note that WM.RPTR does not set the "do" event if the pointer is
within an application sub-window: this is left to the hit routine.

An application sub-window hit routine may, of course, set the "do" event bit at any time.

D3 will normally be returned unchanged. For compatibility, the MSW of D3 is ignored by
WM.RPTR. For WM.RPTRT, the MSW should be cleared if D3 is modified. If, for example,
the application sub-window requires to monitor the keypress byte continuously, a short or
even zero timeout may be specified. Note that, if a zero timeout is specified, the keystroke
(as opposed to keypress) will always be zero.

QPTR The Pointer Environment 113

WM.MHITVector $34

Standard menu application sub-window hit routine

Call parameters Return parameters

D1.l x,y pointer position D1 preserved
D2 uppercased keystroke or 0 D2 preserved

D3 -1
D4.b 0 or pt..do D4+ preserved

A0 A0 channel ID of window
A1 A1 preserved
A2 A2 preserved
A3 ptr to sub-window definition A3 preserved
A4 pointer to working defn A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

Any I/O sub system errors

This is the standard hit routine for a menu application sub-window, not for loose menu
items.

Vector $34 WM.MHIT Standard Menu Hit

if no keystroke and no current item
find new current item
if found: mark current item

else if HIT or DO
find current item
if found

mark current item
if current item available

if HIT: toggle status
if DO: set status selected
redraw current item and call action routine
if status changed: redraw current item

else
find matching selection keystroke
if found

un-mark current item
set pointer
mark current item
if current item available

toggle status
redraw current item and call action routine
if status changed: redraw current item

QPTR The Pointer Environment 114

This routine is intended to be called from application sub-window hit routines to locate the
appropriate section of a multiple section window and check for "hit" or "do" on the pan or
scroll arrows, or for pan or scroll keystrokes.

WM.MSECTVector $48

Find menu section

Call parameters Return parameters

D0.w 0 or pan/scroll item number
D1.l x,y pointer position (absolute) D1 preserved
D2 uppercased keystroke D2 preserved
D3 D3 x,y section number

-1 if in pan/scroll arrows
D4.b event number of keystroke D4.b preserved

or pt..pan or pt..scrl

A0 channel ID of window A0 preserved
A1 A1 preserved
A2 A2 preserved
A3 ptr to sub-window definition A3 preserved
A4 pointer to working defn A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

>0 of pan or scroll event generated

The item number returned in D0.w is the pan/scroll item and is set only if D4 is set to
pt..pan ($A) or pt..scrl ($B). The less significant byte is the section number to which the
operation applies, the most significant nibble is %0111. Bits 8 to 11 specify the type of event
in greater detail.

Bit 8 set for scroll down or pan right
Bit 9 set for pan left or right
Bit 10 set for extra pan/scroll ("do" on arrows or ALT+SHIFT)
Bit 11 zero

QPTR The Pointer Environment 115

The action routines called from WM.MHIT are optional. As WM.MHIT sets the appropriate
byte in the status block, it is not necessary for the application to do anything about a "hit"
until a "do" causes WM.RPTR to return to the application. On the other hand, the action
routine itself can set the "do" event, or it can act on the "hit" directly.

Note that the action routine is called on a "hit" whether the status is selected or
unselected, but not if it is unavailable. The action routine may change the status of the item,
or even the objects within the item.

Standard Application Sub-Window Menu Item Action Routine

Call parameters Return parameters

D1.l virtual column/row for item D1 ???
D2.w item number D2 ???

D3 ???
D4.l 0 or pt..do D4.b 0 or window event to set

D5+ all preserved

A0 window channel ID A0 preserved
A1 pointer to menu status block A1 ???
A2 window manager vector A2 ???
A3 pointer to sub-window defn A3 ???
A4 pointer to working defn A4 preserved
A5 not used by any routine A5 used as required
A6 not used by any routine A6 used as required

Error returns:

D0 and the status register must be set

This is the action routine called from the standard menu application sub-window hit routine
WM.MHIT when a menu application sub-window item is DOne. (A1,D2.w) points to the
current item's status byte. D4 may be set to force a "do" or any other window event.

If there is no action routine for a particular item, then a "do" keystroke will cause a "do"
event.

QPTR The Pointer Environment 116

The application window control routine is called either from the routine WM.RPTR for a
"hit" on the pan or scroll bars associated with a window, or from WM.MHIT when there has
been a "hit" on the pan or scroll arrows. The item number is the special item number for pan
and scroll operations. The least significant byte gives the part menu number to be panned or
scrolled. The routine may adjust the window itself or merely adjust the control tables and call
the sub-window draw routine. In either case, the event flag should be set to zero.
Alternatively the event flag may be left set, and then WM.RPTR will return to the calling
routine with the appropriate event set.

If the routine is called as the result of a "hit" on a pan or scroll bar, the most significant
word of D3 will hold the position of the hit, while the least significant word of D3 will hold the
length of the bar. Otherwise the routine will have been called as a result of a "hit" on the
arrow bars, in which case D3 will have the value -1.

Application Window Control Routine

Call parameters Return parameters

D1 ???
D2.w item number D2 ???
D3.l position of "hit" or -1 D3 ???
D4.b pan or scroll event D4.b 0 or window event to set

D5+ all preserved

A0 window channel ID A0 preserved
A1 pointer to status area A1 ???
A2 window manager vector A2 ???
A3 pointer to sub-window defn A3 ???
A4 pointer to working defn A4 preserved
A5 not used by any routine A5 used as required
A6 not used by any routine A6 used as required

Error returns:

D0 and the status register must be set

The simplest form of control routine is just a call to the window manager panning and
scrolling routine WM.PANSC

JMP WM.PANSC(A2) do standard pan scroll

QPTR The Pointer Environment 117

The loose menu item action routines are similar to the standard menu action routines
(after all, a loose menu item is really part of a standard menu). One difference is that the
menu manager requires there to be an action routine for a loose item corresponding to an
event.

Loose Menu Item Action Routine

Call parameters Return parameters

D1.l x,y pointer position D1 ???
D2.w uppercased keystroke D2 ???

D3 ???
D4.b event number of keystroke D4.b 0 or window event to set

D5+ all preserved

A0 window channel ID A0 preserved
A1 pointer to status area A1 ???
A2 window manager vector A2 ???
A3 pointer to loose menu item A3 ???
A4 pointer to working defn A4 preserved
A5 not used by any routine A5 used as required
A6 not used by any routine A6 used as required

Error returns:

D0 and the status register must be set

The pointer in D1 is in absolute (not window) coordinates. The uppercased keystroke in
D2 also has SPACE ($20) converted to "hit" ($01) and ENTER ($0a) converted to "do" ($02)
and all other event keystrokes converted to the event number less 14.

If the loose menu item was "hit" by a window event keystroke, then the event number (16
to 23) will be in D4. Otherwise D4 will be zero. The action routines may set the appropriate
bit in the event vector as required or may return an event number in D4. However,
WM.RPTR will only return to the calling routine if D4 is non-zero or the condition codes are
non-zero - the event vector is not checked directly.

In the case of a loose menu item which causes an event, the action routine may derive
the event number from the selection keystroke. All such loose menu items may be handled
by the same code:

MOVEQ #14,D4 set event number - event code
ADD.B WWL_SKEY(A3),D4 add event code
MOVEQ #0,D0 done
RTS

Be aware, however, that this code may preclude an item with the selection keystroke F8
(= SHIFT-F3 = 242) from causing a correct return from the hit routine since in that case, D4
may be zero (242 + 14 = 0 if in a byte).

QPTR The Pointer Environment 118

Pannable and Scrollable Sub-Windows

The window management routines have two views of pannable and scrollable windows.
The first is the automatic pan and scroll operations within the routine WM.RPTR. These
operations are caused by events occurring outside the application window. The second view
is from the routine WM.MHIT which will cause pan or scroll operations from within a standard
menu sub-window.

For either of these views, panning or scrolling will only be available if the appropriate part
of the window working definition has been set up.

Any application may, of course, do its own panning or scrolling operations on a sub-
window. It would be preferable if these operations were done in the same way as the window
manager.

The values WWA_NXSC and WWA_NYSC define the pannablility and scrollability of a
sub-window. If WWA_NYSC is 0, then the window is not scrollable, If it is 1, then the window
is scrollable, but may not be split. If it is greater than 1, the window may be split into
independently scrollable sections.

External Pan and Scroll

If a sub-window is set up to be scrollable, then the right hand border of the window is
widened by 8 pixels to accommodate a "scroll bar". This scroll bar is 6 pixels wide and in two
colours. The background bar represents the full "height" of the information being shown,
superimposed on this is a shorter bar representing that part of the information which is
actually visible.

A different section of the information may be viewed by "hitting" the scroll bar. "Hitting"
the top of the scroll bar will scroll to the top of the information. "Hitting" the bottom of the
scroll bar will scroll to the bottom, while "hitting" the middle will scroll to the middle.

As this bar is in the extended border of the sub-window, it is outside the sub-window and
any "hit" in this area will not call the application sub-window hit routine. It will, instead, call the
application sub-window control routine.

If the working definition has been set up so that there may be more than one vertical
section, then the sub-window may be "split" by a "do" on the scroll bar. The scroll bar will
also be split. Each section of the scroll bar represents the position of the visible information
in the appropriate section of the sub-window. Conversely, a "do" on the break between two
scroll bars will re-join the sections.

If a sub-window is set up to be pannable, then the bottom border is deepened by 5 pixels
to accommodate a 4 pixel deep "pan bar". This functions in the same way as the scroll bar.

QPTR The Pointer Environment 119

Internal Pan and Scroll

The standard menu hit routine WM.MHIT traps certain cursor movements as causing pan
or scroll operations: these are ALT arrow to pan or scroll by one column or row at a time, and
ALT SHIFT arrow to pan or scroll by the width or height of a section.

When a scrollable standard menu is drawn by WM.MDRAW, 4 pixel rows (plus the width
of a current item border) are left vacant at the top and bottom of the sub-window. If there any
rows above the topmost visible row, a row of up arrows is inserted at the top. If there are any
rows below the bottommost visible row, then a row of down arrows is inserted at the bottom.

If a scrollable standard menu is split, then space is left at the split for two rows of arrows
(separated by the width of a current item border).

If a row of up arrows is "hit", then the menu will scroll up by one item. If there is a "do" on
a row of up arrows, then the menu will scroll up by the height of the section. The down
arrows behave in a similar way.

When a pannable standard menu is drawn by WM.MDRAW, 8 pixel columns (plus twice
the width of the current border) are left vacant at the left and right of the sub-window. These
spaces are used for left and right arrows which have a similar function to the up and down
arrows.

QPTR The Pointer Environment 120

Sub-Window Indices

It was initially foreseen that standard menu sub-windows could have either a column or a
row index (or both). These indices were to be outside the application sub-window and have
no function except to convey information to the user. When a sub-window was panned or
scrolled, the index were to be updated at the same time. Current versions of the Pointer
Environment do not implement these indices.

To assist with panning and scrolling standard menu sub-windows, a single routine is
provided to pan, scroll, split or join a standard menu.

WM.PANSCVector $38

Pan / Scroll standard menu

Call parameters Return parameters

D2.w item number D2 preserved
D3.l position of "hit" or -1 D3 preserved
D4.b pan or scroll event D4.l 0

A0 window channel ID A0 preserved
A1 A1 preserved
A2 A2 preserved
A3 ptr to sub-window definition A3 preserved
A4 pointer to working defn A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

D0 and the status register must be set

QPTR The Pointer Environment 121

Window Move and Change Size

The size dependent layout features of the Window Manager mean that the interpretation
of a window change size operation is largely the responsibility of the application. If the
Window Manager returns from WM.RPTR with a window move or change size event, then
the routine WM.CHWIN may be called directly.

This routine determines the event and the initial pointer position from the window status
area and calls the appropriate window query trap. The event bit is cleared at this stage. In
the case of a window move, the operation will be completed by WM.CHWIN and 0 is
returned in D4.

In the case of a change size operation, WM.CHWIN will determine the distance moved by
the pointer and return this as the change of size. If the convention that the window change
size icon is in the top left hand corner of the window is being followed, then the move
distance should be subtracted from the current window size. The window size event number
is returned in D4.

WM.CHWINVector $40

Change Window Event Handling

Call parameters Return parameters

D1 D1 x,y pointer move
D2-D3 preserved

D4 D4.l 0 or pt..wsiz

A0 A0 channel ID of window
A1 A1 preserved
A2 A2 preserved
A3 A3 preserved
A4 pointer to working defn A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

Any I/O sub system errors

QPTR The Pointer Environment 122

Utility routines

The following routines are provided to modify the working definition in various useful
ways; in particular, they may be used to show status information or get user input that is
more complex than can be shown by item statuses or "point and hit" input.

If an information object or loose menu item object requires to be redrawn, then the
vectored routines WM.IDRAW and WM.LDRAW can be used. Before redrawing, the objects
themselves can be changed using one of the two following routines.

WM.STLOBVector $4C

Set Loose Item Object

Call parameters Return parameters

D1 item number D1 preserved
D2+ all preserved

A0 A0 preserved
A1 pointer to object A1 preserved
A2 A2 preserved
A3 A3 preserved
A4 pointer to working defn A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

ORNG Item number out of range

BEWARE: the item number is NOT the loose menu item number as defined in the loose
menu item record, but is the position in the list (starting at zero)

QPTR The Pointer Environment 123

WM.STIOBVector $50

Set Information Object

Call parameters Return parameters

D1 window number / object number D1 preserved
D2+ all preserved

A0 A0 preserved
A1 pointer to object A1 preserved
A2 A2 preserved
A3 A3 preserved
A4 pointer to working defn A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

ORNG Window or object number out of range

The window number (MSW D1) is the position in the list of information sub-windows. The
object number (LSW D1) is the position in the list of information objects for that window. Both
start from zero.

The object pointed to by A1 in the above routines is not copied to a "safe place" by the
routines. It is up to the programmer to ensure that it does not move or get overwritten while it
is in use as part of a working definition. In particular, pointing to a string value on the
S*BASIC RI stack or in the variable values area will cause problems.

QPTR The Pointer Environment 124

WM.RNAMEVector $68 Read name
Vector $6C Edit name WM.ENAME

Call parameters Return parameters

D1 D1.w terminating character
D2+ all preserved

A0 channel ID of window A0 preserved
A1 pointer to name buffer A1 preserved
A2 A2 preserved
A3 A3 preserved
A4 A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

Any I/O sub system errors
>0 if terminating character not <NL>

These two routines are used to read or edit strings (notionally file or device names). The
name buffer is in the form of a standard string: a word with the string length, followed by the
characters themselves. The difference between the two vectors is that WM.RNAME puts the
cursor at the start of the name, and if the first character is printable, throws the old name
away, while WM.ENAME leaves the cursor at the end of the name so that it has to be edited.
Additionally, if the first character typed is a space, WM.RNAME will treat this as an ENTER.

The length of the name is limited to the width of the window and the name buffer must be
large enough to accommodate this plus one character.

The routines return on reading ENTER, ESC, UP arrow or DOWN arrow. The condition
codes will be set to -ve for an IO error, zero for ENTER or positive for other terminator.

QPTR The Pointer Environment 125

This routine converts a small negative error code in D0 into the corresponding string; for
instance, D0=-2 converts to "invalid Job". This code works for AH, JM, JS/JSU and all MG
versions of the QL ROM and for SMSQ/E - if other versions are used then the catch-all string
"unknown error" is returned.

On machines running SMSQ/E only, this vector can also be used to create one's own
individual error messages, by having D0 point to it with bit 31 set:

An individual error message is easy to create:
LEA own_msg, A0 ; get address
MOVE.L A0,D0 ; into “error” register
BSET #31,D0 ; error is negative

Note that the length of this individual error message may not exceed $28 (40) characters,
else an error “unknown error” is returned instead.

WM.ERSTRVector $74

Get string corresponding to error code

Call parameters Return parameters

D0 error code D0 error code
D1+ all preserved

A0 A0 preserved
A1 A1 pointer to error string
A2 A2 preserved
A3 A3 preserved
A4 A4 preserved
A5 not used by any routine
A6 not used by any routine

Error returns:

According to value of D0

QPTR The Pointer Environment 126

 Vector $7C WM.SETSP

Set system palette entries

 Call parameters Return parameters

 D1.w start index D1 preserved
 D2.w number of elements D2 preserved
 D3.w number of palette (0-3) D3+ all preserved

 A0 A0 preserved
 A1 pointer to palette entries / 0 A1 preserved
 A2 A2 preserved
 A3 A3 preserved
 A4 A4 preserved
 A5 not used by any routine
 A6 not used by any routine

 Error returns:

IPAR Illegal index number / invalid number of elements

This sets the entries of the system palette indexed in D3 (from 0 to 3, as there are 4
system palettes) to the values in the buffer, beginning with the index in D1 (counting from 0)
and ending with the index D1 + D2 - 1.

If A1 = 0 then the entries are taken out of the default table. Otherwise the buffer must
hold an array of words with the colour values of the different items. The colour format is the
standard WMAN colour format as described elsewhere.

Note: System palettes exist under SMSQ/E but may not exist on all platforms.

QPTR The Pointer Environment 127

 Vector $80 WM.GETSP

 Read system palette entries

 Call parameters Return parameters

 D1.w start index D1 preserved
 D2.w number of elements / -1 D2.w preserved / item count
 D3.w number of palette (0-3) D3+ all preserved

 A0 A0 preserved
 A1 pointer to entry buffer A1 preserved
 A2 A2 preserved
 A3 A3 preserved
 A4 A4 preserved
 A5 not used by any routine
 A6 not used by any routine

 Error returns:
 IPAR Illegal index number / invalid number of elements

Copies entries of the system palette indexed in D3 (from 0 to 3) into the given buffer,
beginning with the index in D1 (counting from 0) and ending with the index D1 + D2 - 1. The
buffer must be big enough to hold all requested entries.

If D1 is given as -1 the function just returns the number of items held in the system
palette. This can increase when more items get defined in new WMAN version. This is
guaranteed to be below 256.

Note: System palettes exist under SMSQ/E but may not exist on all platforms.

QPTR The Pointer Environment 128

 Vector $84 WM.TRAP3

Trap #3 replacement that handles WMAN colour codes

 Call parameters Return parameters

 D0.l function code D0 error code
 D1.w colour code D1 preserved
 D2+ parameter D2+ result according to trap

 A0.l channel id A0 preserved
 A1+ parameter A1+ result according to trap

 Error returns:

same as original traps

This is a drop-in replacement for a "trap #3" call. D0 reacts to any of the codes iow.defb,
iow.defw, iow.spap, iow.sstr, iow.sink and iow.blok. Those routines are exchanged by some
that can handle the extended WMAN colour codes. Other function codes are directly passed
to an ordinary "trap #3" call. The condition codes are guaranteed to be set properly according
to D0, for all traps.

Note: Extended colours exist under SMSQ/E but may not exist on all platforms.

QPTR The Pointer Environment 129

 Vector $88 WM.OPW

Emulate OPW.WIND, OPW.CON and OPW.SCR vectored routines

 Call parameters Return parameters

 D0.l OPW.WIND, OPW.CON or OPW.SCR D0 error code
 D1 D1 smashed
 D2 D2 smashed
 D3 D3 smashed

 A0.l ptr to name (OPW.WIND only) A0.l channel ID
 A1.l ptr to parameter block A1 smashed
 A2 A2 smashed
 A3 A3 smashed

 Error returns:

same as original functions

This is a replacement for the OPW.WIND, OPW.CON and OPW.SCR vectored routines.
In contrast to the originals the parameter block pointed to by A1 is in words instead of bytes:

$00 border colour (word)
$02 border width (word)
$04 paper/strip colour (word)
$06 ink colour (word)

OPW.CON and OPW.SCR define the window using an additional block of four words:

$08 width (word)
$0A height (word)
$0C X-origin (word)
$0E Y-origin (word)

QPTR The Pointer Environment 130

 Vector $8C WM.SSCLR

Set single colour pattern

 Call parameters Return parameters

 D0 D0 0
 D1.w colour number D1 preserved

D2+ all preserved

 A1.l ptr to window status area A1 preserved
 A2.l ptr to pattern space A2 preserved
 A3 A3 preserved
 A4 A4 preserved
 A5 not used by any routine
 A6 not used by any routine

Returns a pattern that is filled with the given colour. The space pointed to by A1 must
hold at least $60 bytes. Does not work for stippled colours.

 Vector $90 WM.JBPAL

Set system palette number of job

 Call parameters Return parameters

 D1.l job ID / -1 D1 preserved
 D2 D2 preserved
 D3.w palette number / -1 D3+ all preserved

 A0 A0 preserved
 A1 ptr to job palette or 0 (D3=-1) A1 preserved
 A2 A2 preserved
 A3 A3 preserved
 A4 A4 preserved
 A5 not used by any routine
 A6 not used by any routine

 Error returns:

IJOB Invalid job ID

Sets the active system palette for the given job. If D1 is -1 then the current job will be
used. D3 can be supplied as -1 which can be used to give the job its very own palette. In this
case a pointer to the palette can be supplied in A1. Attention: the contents of this area is not
copied, it is used directly and must remain there as long as the job uses this palette! If A1 is
supplied as 0 the palette pointer will not be touched.

Note: System palettes exist under SMSQ/E but may not exist on all platforms.

QPTR The Pointer Environment 131

System palette entries

 You can configure SMSQ/E to set the palette(s) to your taste..These are the keys for
SMSQ/E system palettes, they defined in the file keys_syspal.

Name Number Meaning
--
sp.winbd $0200 Window border
sp.winbg $0201 Window background
sp.winfg $0202 Window foreground
sp.winmg $0203 Window middleground
sp.titlebg $0204 Title background
sp.titletextbg $0205 Title text background
sp.titlefg $0206 Title foreground
sp.litemhigh $0207 Loose item highlight
sp.litemavabg $0208 Loose item available background
sp.litemavafg $0209 Loose item available foreground
sp.litemselbg $020a Loose item selected background
sp.litemselfg $020b Loose item selected foreground
sp.litemunabg $020c Loose item unavailable background
sp.litemunafg $020d Loose item unavailable foreground
sp.infwinbd $020e Information window border
sp.infwinbg $020f Information window background
sp.infwinfg $0210 Information window foreground
sp.infwinmg $0211 Information window middleground
sp.subinfbd $0212 Subsidiary information window border
sp.subinfbg $0213 Subsidiary information window background
sp.subinffg $0214 Subsidiary information window foreground
sp.subinfmg $0215 Subsidiary information window middleground
sp.appbd $0216 Application window border
sp.appbg $0217 Application window background
sp.appfg $0218 Application window foreground
sp.appmg $0219 Application window middleground
sp.appihigh $021a Application window item highlight
sp.appiavabg $021b Application window item available background
sp.appiavafg $021c Application window item available foreground
sp.appiselbg $021d Application window item selected background
sp.appiselfg $021e Application window item selected foreground
sp.appiunabg $021f Application window item unavailable background
sp.appiunafg $0220 Application window item unavailable foreground
sp.scrbar $0221 Pan/scroll bar
sp.scrbarsec $0222 Pan/scroll bar section
sp.scrbararr $0223 Pan/scroll bar arrow
sp.buthigh $0224 Button highlight
sp.butbd $0225 Button border
sp.butbg $0226 Button background
sp.butfg $0227 Button foreground
sp.hintbd $0228 Hint border
sp.hintbg $0229 Hint background
sp.hintfg $022a Hint foreground
sp.hintmg $022b Hint middleground
sp.errbg $022c Error message background
sp.errfg $022d Error message foreground
sp.errmg $022e Error message middleground
sp.shaded $022f Shaded area
sp.3ddark $0230 Dark 3D border shade
sp.3dlight $0231 Light 3D border shade
sp.vertfill $0232 Vertical area fill
sp.subtitbg $0233 Subtitle background
sp.subtittxtbg $0234 Subtitle text background
sp.subtitfg $0235 Subtitle foreground
sp.mindexbg $0236 Menu index background
sp.mindexfg $0237 Menu index foreground
sp.separator $0238 Separator lines etc.

QPTR The Pointer Environment 132

Index of TRAPs and vectors

The Pointer Interface TRAPs and Window Manager vectors are listed alphabetically,
along with a summary of what each does. Pointer Interface TRAPs start with the prefix IOP.
and Window Manager vectors with WM.

With the exceptions of vector WM.DRBDR (which is located after vector WM.SWSEC)
and vector WM.RPTRT (which comes after vector WM.RPTR), all of the traps and vectors
are explained above in the order of their trap/vector number.

Routine
Trap/

Vector nbr Short description
IOP.FLIM $6C find window limits
IOP.LBLB $74 draw a line of blobs
IOP.OUTL $7A set window outline and shadow
IOP.PICK $7C pick/unlock job
IOP.PINF $70 get pointer information
IOP.RPTR $71 read pointer position
IOP.RPXL $72 read/scan pixel colour
IOP.RSPW $6E restore part window
IOP.SLNK $6F set bytes in linkage block
IOP.SPLM $79 set pointer limit
IOP.SPRY $77 spray pixels
IOP.SPTR $7B set pointer position
IOP.SVPW $6D save part window
IOP.SWDF $7D set sub-window definition pointer
IOP.WBLB $73 write blob
IOP.WPAP $6B define wallpaper
IOP.WRST $7F restore window contents
IOP.WSAV $7E save window contents
IOP.WSPT $76 write sprite
WM.CHWIN $40 change window position or size
WM.DRBDR $44 draw current item border
WM.ENAME $6C edit name
WM.ERSTR $74 get error string
WM.FSIZE $54 find layout size
WM.IDRAW $3C re-draw information window(s)
WM.GETSP $80 read system palette entries
WM.INDEX $24 draw index items
WM.JBPAL $90 set system palette number of job
WM.LDRAW $2C draw loose items
WM.MDRAW $20 draw menu sub-window contents
WM.MHIT $34 standard menu sub-window hit routine
WM.MSECT $34 find menu section
WM.PANSC $38 standard menu sub-window control routine
WM.PRPOS $0C primary window position and clear
WM.PULLD $10 pull-down window position and clear
WM.RNAME $68 read name
WM.RPTR $30 read pointer
WM.RPTRT $78 read pointer with timeout and job events
WM.SETSP $7C set system palette entries
WM.SETUP $04 set up from standard window definition
WM.SMENU $08 set up from standard menu definition
WM.SSCLR $8C set single colour pattern
WM.STIOB $50 (re)set information object

QPTR The Pointer Environment 133

WM.STLOB $4C (re)set loose object
WM.SWAPP $60 set window to application sub-window
WM.SWINF $58 set window to information sub-window
WM.SWLIT $5C set window to loose item
WM.SWDEF $28 set window to application sub-window
WM.SWSEC $64 set window to section of sub-window
WM.TRAP3 $84 Trap #3 replacement that handles WMAN colour codes
WM.UNSET $14 unset working definition
WM.UPBAR $70 update pan/scroll bars
WM.WDRAW $1C draw window contents
WM.WRSET $18 reset working definition

QPTR The Pointer Environment 134

New CON Vectors

A new vector block has been introduced to provide direct access to new screen driver
functions. To call one of those functions, one first needs a pointer to the CON linkage block.
This can either be obtained in the traditional way or, in SMSQ/E, by reading the sys_clnk
($c4) system variable. It is planned that future non- SMSQ/E PTR_GEN/WMAN versions will
also support this system variable. On current non- SMSQ/E systems its value should be 0.

The pointer to the vector table itself is located in the new pt_vecs variable within the
linkage block. A typical call sequence can thus look like this:

 moveq #sms.info,d0
 trap #1 ; get ptr to system variables in a0
 move.l sys_clnk(a0),a3 ; ptr to CON linkage
 move.l pt_vecs(a3),a0 ; vector table
 jsr pv_fspr(a0) ; actual call

PLEASE NOTE: Most vectors so far expect A3 to be the pointer to the CON linkage
block on entering the call. With the above code, this is done automatically.

The keys (e.g. the values of pv_pinf, pv_fspr etc) are contained in the file
keys_con.

 Vector $00 PV_PINF

 Like iop.pinf, but one doesn't need a channel to call this routine.

 Call parameters Return parameters

 D1 D1 pointer version number
 D2 D2 preserved
 D3 D3 preserved

 A0 A0 preserved
 A1 A1 pointer to WMAN
 A2 A2 preserved
 A3 pointer to CON linkage block A3 preserved

No error returns - this routine always succeeds.

QPTR The Pointer Environment 135

 Vector $06 PV_FSPR

 Look in linked sprite list for the definition that would actually be used in the current

display mode.

 Call parameters Return parameters

 D1 D1 preserved
 D2 D2 preserved
 D3 D3 preserved

 A1 ptr to 1st sprite A1 ptr to fitting sprite
 A2 A2 preserved
 A3 ptr to CON linkage block A3 preserved

No error returns - this routine always "succeeds".
If no fitting sprite is found, a pointer to the arrow sprite is returned!

QPTR The Pointer Environment 136

 Vector $0C PV_SSPR

 Set system sprites/Get system sprite address

 Call parameters Return parameters

 D1.w sprite number / -ve D1 pres./ Max allowed | max current
 D2 D2 preserved
 D3 D3 preserved

 A0 A0 preserved
 A1 pointer to sprite / 0 A1 preserved / pointer to sprite
 A2 A2 preserved
 A3 pointer to CON linkage block A3 preserved

 Error returns:
 IPAR Illegal sprite number (set/get)
 ITNF there are no system sprites !

This gets or sets a system sprite or returns the max nbr of system sprites:

• if d1 is a negative nbr (-1 is suggested), then on return d1 contains: max nbr of
space in table for sys sprites | highest nbr of current system sprite

else:
• if a1 = 0, then one gets the address of the system sprite the number of which is

passed in D1. The address is returned in a1.This address MAY be 0, in which case
the system sprite requested does not exist. This will only happen if somebody fiddled
with the table contrary to recommendations

• if a1 <> then it contains the address of a sprite that will be a system sprite, D1
contains the number of that sprite. This sprite is not " copied to a safe place", it is the
responsibility of the calling job to make sure that the sprite doesn't just disappear

For a list of the system sprites defined thus far see keys_sysspr.

The sprite table has the following format:

 -2 max nbr of sprites possible in table
 0 nbr of sprites currently in table
 2+ long word absolute pointers (i.e real addresses of sprites)

There is a new keyword to set any sprite as a system sprite

SYSSPRLOAD system_sprite_number,file_name$

This loads the file and sets it as the system sprite with the given number.

Please make sure that this file only contains the sprite data for a valid cursor sprite. The
command does NOT check this. If this command seems to fail, i.e. the cursor sprite doesn't
change to what you want it to be, the data contained in this file is perhaps not a valid cursor
sprite for the current screen resolution.

QPTR The Pointer Environment 137

 Vector $12 PV_SIZE

 Get shift sizes

 Call parameters Return parameters
 D0 D0 pt.spxlw pt.rpxlw
 D1 D1 preserved
 D2 D2 preserved
 D3 D3 preserved

 A0 A0 preserved
 A1 A1 preserved
 A2 A2 preserved
 A3 pointer to CON linkage block A3 preserved

 D0 returns :
 pt.spxlw : shift pixels to long word
 pt.rpxlw : round up pixels to long word

 Error returns:
 None, this vector always succeeds.
 The value in D0 is not an error return

QPTR The Pointer Environment 138

 Vector $18 PV_MBLK

 Moves a block of screen memory about

 Call parameters Return parameters
 D0 D0 smashed (undefined)
 D1 size of section to move D1 smashed
 D2 old origin in source area D2 smashed
 D3 new origin in destination area D3 smashed
 D4 D4 smashed
 D5 D5 smashed

 A2 row increment of source area A2 smashed
 A3 row increment of dest. area A3 smashed
 A4 base address of source area A4 smashed
 A5 base address of destination area A5 smashed

 All other registers are preserved

 Error returns:
 None, this vector always succeeds.
 The value in D0 is not an error return!

This moves a block of screen memory about, from source to destination. The x|y size of
the block, in pixels, is contained in D1 on entry.

Note : do not (mis)use this vector to move general memory about. The size of the
memory actually moved depends on the screen driver that is being used. Thus, if you
move a block of 10x20 pixels (x|y size) in modes 16 and 31, then 200 bytes will be
moved (1 pixel = 1 byte). In modes 32 and 33, 400 bytes will be moved (1 pixel = 2
bytes) and in the QL modes, less bytes will be moved.

QPTR The Pointer Environment 139

Vector $1E PV_CURSP

 Sets the per job cursor under SMSQ/E

 Call parameters Return parameters

 D0 D0 error
 D1 jobID D1 smashed
 D2 status wished (0 | 1) D2 preserved
 D3 D3 preserved

 A0 A0 preserved
 A1 A1 preserved
 A2 A2 preserved
 A3 pointer to CON linkage block A3 preserved

 Error returns:
 IJOB wrong job ID
 NIMP something went horribly wrong : no job table!

The status in D2 is 0 if normal cursor, 1 if sprite cursor wished

From version 3.06 onwards, SMSQ/E allows you to use a sprite for a cursor.

The sprite to be used as a cursor:

• MUST be of size 6x10 (WxH), else it will not be used.
• MUST be the one set at position 36 in the system sprites
• MUST be showable in the current screen resolution

If any of the above conditions is not met, then the normal cursor is shown.

You may load a cursor sprite with the CURSPRLOAD command:

CURSPRLOAD filename

This loads "filename" and uses it as a cursor sprite. Please make sure that this file only
contains the sprite data for a valid cursor sprite. The command does NOT check this. If this
command seems to fail, i.e. the cursor sprite doesn't change to what you want it to be, the
data contained in this file is perhaps not a valid cursor sprite for the current screen
resolution.

 On a system-wide basis, a new SMSQ/E configuration item lets you configure whether
you want to use sprites as cursor or not. To use a sprite on a per job basis, you may use this
vector from machine code or the CURSPRON and CURSPROFF SBASIC commands:

CURSPRON job_name
or

CURSPRON job_number,job_tag

Switches the cursor as sprite feature on or off.

QPTR The Pointer Environment 140

Example: Let us suppose you have Xchange running on your machine. Typing 'jobs' will
tell you more about this job, something like this:

 Job Tag Owner Priority Job-Name
 (...)
 9 8 0 8 Xchange V3.90J

 You can now switch using the sprite cursor on/off by:

 CURSPRON "Xchange V3.90J"
 or

 CURSOROFF 9,8

 You can use this vector as follows, assuming A0 points to the system variables
(include the files keys_sys and keys_con in your code for this to work):

 move.l sys_clnk(a0),a1 ; point to dddb
 move.l pt_vecs(a1),a1 ; point to vectors
 moveq #-1,d1 ; set cursor for myself
 moveq #0,d2 ; use old cursor
 jsr pt_cursp(a1) ; do it now
 (....)

 Vector $24 PV_BGCTL

 Gets/sets the background I/O status

 Call parameters Return parameters

 D0 D0 standard error code
 D1 -1 read, 0 disable, 1 enable D1 0 disabled, >0 enabled
 D2 0 D2 preserved
 D3 D3 preserved

 A0 A0 preserved
 A1 A1 preserved
 A2 A2 preserved
 A3 pointer to CON linkage block A3 preserved

 Error returns:
 IPAR D2 is not 0
 NIMP OS is not background I/O compatible

This sets or gets the background I/O status. If D1 is negative on entry, the current
background I/O status is returned, else the current background I/O status is set according to
the value of D1 (any value other than 0 enables background I/O).

QPTR The Pointer Environment 141

 Vector $2A PV_CMBBLK

 Combines two blocks of (screen) memory with alpha blending and puts the result into

the destination block

 Call parameters Return parameters

 D0 D0 smashed (undefined)
 D1 size of block to combine D1 smashed
 D2 origin in source area 1 D2 smashed
 D3 new origin in destination area D3 smashed
 D4 origin in source area 2 D4 smashed
 D5 D5 smashed
 D6 alpha value D6 preserved
 D7 row increment of source area 2 D7 smashed

 A1 base address of source area 2 A1 smashed
 A2 row increment of source area 1 A2 smashed
 A3 row increment of dest. area A3 smashed
 A4 base address of source area 1 A4 smashed
 A5 base address of destination area A5 smashed

All other registers are preserved

 Error returns:
 None, this vector always succeeds.
 The value in D0 is not an error return

This will combine the pixels of two blocks of screen memory with an alpha blending
operation and put the resulting block into the destination. The x|y size of the block, in pixels,
is contained in D1 on entry. D6 contains the alpha value, from 1 (nearly transparent) to 255
(totally opaque) in the LSB.

This vector is only implemented for screen modes where alpha blending actually
makes sense, i.e. modes 16, 32 and 33. In other screen modes, such as the QL screen
modes, or atari mono modes, this vector is redirected to vector pv_mblk.

Do not (mis)use this vector to combine general memory. The size of the memory actually
combined depends on the screen driver that is being used. Thus, if you combine a block of
10x20 pixels (xy size), in mode 16, then 200 bytes will be combined (1 pixel = 1 byte). But in
modes 32 and 33, 200 words (400 bytes) will be combined (1 pixel = 2 bytes).

QPTR The Pointer Environment 142

Index of CON Vectors

The con vectors are explained above in the order of the vector number.

PV_BGCTL $24 Gets/sets the background I/O status
PV_CMBBLK $2A Combines two blocks of (screen) memory with alpha blending and

puts the result into the destination block
PV_CURSP $1E Sets the per job cursor under SMSQ/E
PV_FSPR $06 Look in linked sprite list for the definition that would actually be used in

the current display mode.
PV_MBLK $18 Moves a block of screen memory about
PV_PINF $00 Like iop.pinf, but one doesn't need a channel to call this routine
PV_SIZE $12 Get shift sizes
PV_SSPR $0C Set system sprites/Get system sprite address

QPTR The Pointer Environment 143

Data Structures

Pointer Interface

Channel Definition block

The Pointer Interface forms the base level of the Pointer Environment and provides all
those facilities which are accessed through the IO sub-system (IOSS). These include
channel open, close and normal screen IO as well as the pointer IO extensions. The Pointer
Environment uses this display driver which coexists with the standard CON and SCR drivers,
and extends the CON and SCR drivers to handle overlapping windows. The extended driver
requires an extended channel definition block, the format of which is discussed here.

The keys_con file contains definitions of the symbols used when manipulating the
extended channel definition block. Ordinary applications should not need to use these.

The facility to handle overlapping windows introduces the concept of piles of windows.
Windows overlap each other in piles. Any window which is partly obscured by another
window is locked and may not be altered, unless background I/O is switched on (see the
Concepts section). Windows may be moved to the top of the pile by the user, and
applications may bury their own windows. Burying a window is actually performed by
exhuming the bottom window in the pile. This will not actually bury the window unless the
bottom window overlaps the top window. The internal structure used to maintain these piles
is a bi-directional linked list of all primary windows. In addition, each primary window has a
pointer to an area of memory in which to save its contents when it becomes locked, and a
flag to signal whether the window is locked. For the sake of speed, the flag is duplicated in all
its secondaries.

One of the major differences between the standard screen handling and Pointer
Environment screen handling is the redirection of the keyboard input. Normally the "CTRL C"
keystroke is used to redirect the keyboard input. With the Pointer Interface installed, the
"CTRL C" keystroke is used to move windows to the top of the pile, redirecting the keyboard
input as a side effect. This is achieved by modifying the normal circularly linked list of
keyboard queues into a form that allows the detection of the "CTRL C" keystroke by the
Pointer Interface. If the keyboard queue is moved to a job which is waiting for character
input, then the pointer will be disabled, otherwise the pointer will be enabled. When the
pointer is enabled, the cursor keys will move the pointer unless SHIFT, CTRL or ALT is
pressed.

An alternative method of moving the window to the top of the pile may be used when the
pointer is enabled. This is to move the pointer to part of a new window and "hit" it. If that
window is buried, then the window will be picked to the top of the pile and the hit will be
ignored. If the window is waiting for character input, then the pointer will be disabled and the
hit will be ignored. The keyboard input will then be directed to that window.

To enable programs which have been written for use on a standard QL to function
sensibly in the pointer environment, windows are divided into two types: primary and
secondary. A primary window represents the total working area for an application. An
application may have several secondary windows open, but all of these must be contained
within the outline of the primary window. This introduces a new size concept. The standard
screen driver in the QL has a window size and position: this is the window working area. The
extended screen driver has two other sizes: the outline and the hit area. The outline is the
limit enclosing all of an application's windows; Creating any window outside the application's

QPTR The Pointer Environment 144

primary window outline will cause the outline to be extended. The outline includes any
window borders and shadows. The hit area is the area that the pointer routines will recognise
for the purposes of hitting windows and selecting appropriate sprites. The hit area is the
outline less any shadow area. The first window used for IO by an application is considered to
be the primary window, any other windows owned by the same job are secondary windows.
The outline and hit area are maintained in the extended channel definition block, along with a
system of pointers linking primary windows to their secondaries, and all secondaries back to
their primary.

The pointer routines may also make use of information in window definitions, so there is
also a link to a window working definition.

Extended Channel Block

The pointer routines use an extended channel definition block. In order to make this
compatible with the internal ROM code, the block is extended below the start of the standard
block, but above the 18 byte channel block header.

sd.extnl $30 screen definition extension length
sd_xhits -$18 word x hit size
sd_yhits -$16 word y hit size
sd_xhito -$14 word x hit origin (screen coordinates)
sd_yhito -$12 word y hit origin (screen coordinates)
sd_xouts -$10 word x outline size
sd_youts -$0e word y outline size
sd_xouto -$0c word x outline origin (screen coordinates)
sd_youto -$0a word y outline origin (screen coordinates)
sd_prwlb -$08 long primary link list bottom up (primary window)
sd_pprwn -$08 long pointer to primary window (secondary window)
sd_prwlt -$04 long primary link list top down (primary window)
sd_sewll $00 long secondary window link list pointer
sd_wsave $04 long window save area base
sd_wssiz $08 long size of window save area
sd_wwdef $0c long pointer to window working definition
sd_wlstt $10 byte window lock status -1 locked, 0 unlocked, 1 no lock
sd_prwin $11 byte bit 7 set for primary window,

bit 0 set if managed (IOP.OUTL called)
sd_wmode $12 byte mode of this window
sd_mysav $13 byte true if save area is mine
sd_wmove $14 byte window move / query flag (D2 from IOP.RPTR)

QPTR The Pointer Environment 145

Graphics objects

These base level data structures are used to pass information to the base level pointer IO
calls. All these structures represent visual information. These structures have various forms,
there is a canonical form and a screen mode dependent form. To simplify application
programs, variations on the objects for various display modes can be linked into lists which
future versions of the pointer traps will scan for the most suitable form. In current versions
the pointer traps require the objects to be specified in the actual display mode for the
window.

The file QDOS_PT contains symbol definitions suitable for use in programs that
manipulate graphics objects.

All the structures are made from a limited set of basic elements.

Form

The form is a word which describes the screen dependent mode of the following patterns,
followed by two bytes describing the mode adaption rules. The first of these is relevant only
when the object is a sprite used as a pointer, and defines how it changes with time: the
second defines how the object may be adapted to fit the display aspect ratio. Note: sprite
definitions have changed extensively, please see the section on sprites below.

Dynamic pointers, that change shape with time, are used by setting the time byte to a
non-zero value: by linking several sprite definitions together with increasing time values (Tn),
the sprite will appear in the lowest numbered form for T1 "ticks", then change to the second
form for T2-T1 ticks, then the third for T3-T2, and so on. When no sprite can be found with a
Tn greater than the elapsed time, the counter is reset to zero and the first form appears
again. The maximum value of Tn being 255, and the count being incremented (roughly)
every 20ms, the sprite may have a period of up to 5 seconds or so.

Form
00fc canonical, aspect ratio 1:.50
00fd canonical, aspect ratio 1:.60
00fe canonical, aspect ratio 1:.71
00ff canonical, aspect ratio 1:.83
0000 canonical, aspect ratio 1:1.0
0001 canonical, aspect ratio 1:1.2
0002 canonical, aspect ratio 1:1.4
0003 canonical, aspect ratio 1:1.7
0004 canonical, aspect ratio 1:2.0

0100 QL 4 colour
0101 QL 8 colour

Time
00 static
1..FF used for time<n

Adaption
00 translate pixel to pixel
+01 expand x if required
+02 contract x if required
+04 expand y if required
+08 contract y if required

QPTR The Pointer Environment 146

Size

The size of an object is defined by two words, the number of pixels in the x direction, and
the number of pixels in the y direction. The only limit on the size is that it must be positive
non zero in both directions.

Repeat

Some types of information have a repeat attribute. This is two words, the repeat distance
(in pixels) in the x direction, and the repeat distance (in pixels) in the y direction. The y repeat
must be positive non zero, the x repeat must be a positive non zero multiple of the number of
pixels in a 16 bit word.

Origin

The base level structures assume a pixel coordinate system with the origin at the top LHS
with x increasing to the right, y increasing downwards. Objects may have their own origin
which is defined as two words, x origin and y origin. A negative origin is outside the object to
the left (x) or above (y). A zero origin is the top left pixel of the object.

Colour

For the canonical forms (and possibly some other forms) it is assumed that colours are
represented by a maximum of 15 bits (32768 colours). Notionally these are regarded as 5 bit
resolution for each of the 3 primary colours. The 16th bit is used to indicate the opacity of the
object. The order of bits is (MSB) green, red, blue, green/2, red/2, red/16, blue/16,
opaque (LSB). For monochrome, the 15 most significant bits represent the display
brightness.

Colours on new WMAN calls

Colours for the new WMAN calls are always given as one word. The word may have any
of the following formats:

 %00000000cccccccc exactly as before
 %00000001pppppppp palette
 %00000010pppppppp system palette
 %00000011gggggggg gray scale
 %00000100cc00tttd 3d border (border calls only!). see below
 %01ssxxxxxxyyyyyy palette stipple. see below
 %1rrrrrgggggbbbbb 15 bit RGB

Stipple format
 s = stipple code (0 = dot, 1 = horizontal, 2 = vertical, 3 = checkers)
 x = stipple colour
 y = main colour

As x and y can only hold 6 bit only the first 64 entries of the palette can be used for
stippling. Due to the design of the palette those entries alone still cover the whole colour
range quite well.

3d border format
 d = direction (0 = raised, 1 = lowered)
 t = type
 c = compatibility mode

QPTR The Pointer Environment 147

The compatibility modes are available on some border types and they tell how to squeeze
a non-standard border size into a QL border. Some modes paint areas with the current paper
colour, therefore it is a wise idea to always set the paper colour before the border. The
WMAN routines have already been changed to take this into account.

In case of a non-standard border width another border call on this window MUST be
made through the WMAN routines instead of the standard border calls (e.g. by calling
wm.trap3). Otherwise the overall window size will be altered.

The colours to paint the border are defined in the system palette (sp.3ddark and
sp.3dlight). Future versions may shade the paper colour, therefore it's again a good idea to
set the paper colour before the border call.

These are the 3D border types available:

QPTR The Pointer Environment 148

Pattern

Canonical patterns are defined as colour planes. A canonical pattern starts with a word
which defines the number of planes that will follow. The block defining each plane is
preceded by a colour word defining the contribution of the following block to the complete
colour. In every block of a canonical pattern each bit represents a pixel, the most significant
bit in the first word is the top left pixel. Unused parts of words should be filled with zeros.

E.g. canonical form of yellow block (5x4) enclosing a black block (3x2)

dc.w 2 two blocks required
dc.w %1100000000000000 define yellow
dc.w %1111100000000000
dc.w %1000100000000000
dc.w %1000100000000000
dc.w %1111100000000000
dc.w %0000000000000001 define opaque
dc.w %1111100000000000
dc.w %1111100000000000
dc.w %1111100000000000
dc.w %1111100000000000

Specific form patterns are stored using the standard screen representation of the pattern.
For this reason, there are two types of specific form pattern, the colour pattern, which is the
colour representation, and the pattern mask which is white for opaque, and black for
transparent. The base level routines require specific form patterns.

Sprite Definition

A sprite definition originally had a form, size, origin, colour pattern and pattern mask:

form 2 words
size 2 words
origin 2 words
colour pattern long word relative pointer
pattern mask long word relative pointer
next definition long word relative pointer

The original sprite definition has been extensively modified, but in such a way that it
should continue to be compatible with older sprites.

QPTR The Pointer Environment 149

Sprite header

The sprite header is now as follows:

pto_form $00 byte sprite mode
 $01 byte colour mode / system sprite number
pto_vers $02 byte dynamic sprite version number
pto_ctrl $03 byte sprite control
pto_xsiz $04 word X size
pto_ysiz $06 word Y size
pto_xorg $08 word X offset
pto_yorg $0a word Y offset
pto_cpat $0c long relative pointer to colour pattern
pto_mask $10 long relative pointer to mask/alpha channel
pto_nobj $14 long relative pointer to next object

pto_opts $18 long OPTIONAL (relative pointer to) options
pto_blk $1c long OPTIONAL relative pointer to sprite block
(the keys can be found in keys_qdos_pt)

Sprite mode byte

Sprite mode can be any of the following:
 0 system sprite
 1 traditional QL colour sprite (as before)
 2 GD2 colour sprite

System sprite:
When the sprite mode is 0 for system sprites then the second byte is the number of the
sprite. ALL other values are ignored in that case, i.e. a system sprite reference is only 2
bytes long.

QL colour sprite:
If this is a traditional QL colour sprite, then the colour mode byte has one of the following
values (as before)

 0 mode 4
 1 mode 8

GD2 colour sprite:
 0 1 bit black&white
 3 1 bit palette mapped
 4 2 bit fixed gr palette
 7 2 bit palette mapped
 8 4 bit fixed irgb palette
 15 4 bit palette mapped
 16 8 bit fixed palette (equals Aurora palette)
 31 8 bit palette mapped
 32 16 bit QPC/QXL/SMSQmulator %gggbbbbbrrrrrggg format
 33 16 bit Q40 /Q60 %gggggrrrrrbbbbbw format
 64 32 bit $RRGGBB00 format

QPTR The Pointer Environment 150

Sprite control byte

The sprite control byte is formatted as follows:

 %mpao0xcc

where
• cc stands for a chache version number. Programs can increment this value

to signal the cache that the sprite has changed. A special value is pto.fupd
(force update, %11), which causes the system to never use the cached
version.
key: pto.cver

• a flags whether the sprite uses an alpha channel instead of a mask (see
below)
key: pto.alph

• m and p signal whether the pattern (p) or the mask (m) is compressed (see
below)
key: pto.pcmp and pto.mcmp

• x signals that the optional pointer to a sprite block is present (bit x=1) or is
not present (bit x=0) (see below)
 key pto.blk

• o signals that options are present (=1) or not (=0) (see below, currently
unused)
key pto.opt

Alpha channel

When the pto.alph flag is set in the sprite control byte, the mask is considered to be an
alpha channel. An alpha channel allows gradual mixes between the background and the
sprite pattern. Every pixel is represented by exactly one byte. 0 means the pixel is
completely transparent, 255 means the pixel is completely opaque. Values in between
determine the degree of mixing of background and foreground. Alpha channel information is
not padded at the end of each line. There's one byte for every pixel and nothing more. Alpha
channels make no sense on traditional QL style sprites and need higher colours.

RLE compression

 Both pattern and mask/alpha channel can be compressed using a simple RLE (run
length encoding) algorithm. This is useful with data that is largely homogene, which is often
the case with masks. Compressed data must be signalled in the sprite control byte
(pto.pcmp, pto.mcmp) and starts with the bytes 'RLEx', with 'x' being either 1, 2 or 4. This is
the item size (number of bytes) the algorithm is working with. 8 bit RLE compression of 32 bit
data wouldn't yield in good results, therefore the algorithm can also work on 16 bit or 32 bit
data. After the ID there's one long word containing the size of the data in uncompressed
form. After that the compressed data itself is following.

The compressed data always consists of one byte and one or more items. If the leading
byte is in the range of 0<=x<128 then x+1 uncompressed items are following. Otherwise only
one item is following, which represents 257-x times the same item in the uncompressed
data.

QPTR The Pointer Environment 151

Examples:

A small blue circle, with hard transparency mask in 8 bit mode:

sp_circle
 dc.w $0210,0 ; 8 bit mode
 dc.w 5,5,0,0 ; size 5x5 pixels with origin at 0x0
 dc.l s8p_circle-*
 dc.l s8m_circle-*
 dc.l 0

s8p_circle
 dc.b $00,$27,$27,$27,$00,0,0,0 ; Note the padding
 dc.b $27,$27,$27,$27,$27,0,0,0
 dc.b $27,$27,$27,$27,$27,0,0,0
 dc.b $27,$27,$27,$27,$27,0,0,0
 dc.b $00,$27,$27,$27,$00,0,0,0

x equ -1
s8m_circle
 dc.b 0,x,x,x,0,0,0,0 ; Same padding as pattern
 dc.b x,x,x,x,x,0,0,0
 dc.b x,x,x,x,x,0,0,0
 dc.b x,x,x,x,x,0,0,0
 dc.b 0,x,x,x,0,0,0,0

Now the same circle with some soft alpha shading

sp_circle
 dc.w $0210,pto.alph ; 8 bit mode, alpha blending
 dc.w 5,5,0,0 ; size 5x5 pixels with origin at 0x0
 dc.l s8p_circle-*
 dc.l s8a_circle-*
 dc.l 0

s8p_circle
 dc.b $00,$27,$27,$27,$00,0,0,0 ; Note the padding
 dc.b $27,$27,$27,$27,$27,0,0,0
 dc.b $27,$27,$27,$27,$27,0,0,0
 dc.b $27,$27,$27,$27,$27,0,0,0
 dc.b $00,$27,$27,$27,$00,0,0,0

s8a_circle
 dc.b $00,$40,$40,$40,$00 ; Note: no padding!
 dc.b $40,$80,$80,$80,$40
 dc.b $40,$80,$FF,$80,$40
 dc.b $40,$80,$80,$80,$40
 dc.b $00,$40,$40,$40,$00

Finally the same circle with alpha blending and compression

sp_circle
 dc.w $0210,pto.alph+pto.pcmp+pto.mcmp ; 8 bit mode
 dc.w 5,5,0,0 ; size 5x5 pixels with origin at 0x0
 dc.l s8p_circle-*
 dc.l s8a_circle-*
 dc.l 0

QPTR The Pointer Environment 152

s8p_circle
 dc.b 'RLE1' ; bytes sized RLE algorithm
 dc.l 8*5 ; uncompressed data size
 dc.b $00,$00,$FE,$27,$FD,$00 ; 1st line
 dc.b $FC,$27,$FE,$00 ; 2nd line
 dc.b $FC,$27,$FE,$00 ; ...
 dc.b $FC,$27,$FE,$00
 dc.b $00,$00,$FE,$27,$FD,$00 ; saved 8 bytes in total. Yeah

s8a_circle
 dc.b 'RLE1'
 dc.l 5*5
 dc.b $00,$00,$FE,$40,$01,$00 ; 1st line
 dc.b $40,$FE,$80,$FF,$40 ; 2nd line
 dc.b $02,$80,$FF,$80,$FF,$40 ; begins at 2nd byte of 3rd line
 dc.b $FE,$80,$01,$40 ; begins at 2nd byte of 4th line
 dc.b $00,$FE,$40,$00,$00 ; 5th line

Of course RLE compression doesn't make much sense here, it's just for the sake of the
example. Note also that the compression of pattern and mask are independent, in this case
one could have left the alpha channel alone and only compress the pattern. If the 8 bytes are
worth it...

Sprite block

The object drawing routines have been amended so as to allow different sprites to be
drawn in loose menu items, depending on the status of that item. In such a case, it behooves
the application to supply the different sprites and to set up a "sprite block" which is just a
block of 5 longword pointers, as defined just below.

To keep things compatible with older versions of WMAN, this has been handled by
setting a bit (pto..blk) in the sprite control byte. If this bit is set to 1, then there must be a
pointer pointer to a sprite block. Please note that this pointer MUST be preceded by the
(pointer to) additional options (see below) which, currently is just a longword 0.

IF pto..blk IS SET, THEN pto_opts MUST EXIST (AS A LONG WORD 0) AND pto_blk
MUST POINT TO A VALID BLOCK.

The sprite pointer block is just a block of 5 longword pointers:

pointer to sprite if item is available
pointer to sprite if item is available AND is the current item
pointer to sprite if item is selected
pointer to sprite if item is selected AND is the current item
pointer to sprite if item is unavailable

In all cases, these are long word relative pointers.

QPTR The Pointer Environment 153

All but the first pointer may be 0. The first pointer (item available) MUST exist and point to
a real sprite.

0 pointers are handled as follows:

• For available items:
• The pointer to the available item sprite MUST exist.

• If no pointer to an available AND current item sprite exists, then the available item
sprite is taken instead

• For selected items:

• If no pointer to a selected item exists, then the pointer to the selected item AND
current item is ALSO ignored. The available item sprite is taken instead for
both.

• If no pointer to a selected AND current item sprite exists, then the selected item
sprite is taken instead.

• For unavailable items, the available item sprite is used.

It is allowed, but not necessary, for any of these pointers including the first pointer
(available item) to point back to the original sprite, which will then be drawn as a normal
sprite!

This allows three cases:

1 - The original sprite can be an ordinary QL mode sprite, which will be drawn normally by
older versions of WMAN. The newer versions of WMAN will use the extended format.

2 - The original sprite could be a simple empty shell, with just the relevant data (bit
pro..blk) and the pointer to a sprite block set.

3 - The original sprite could be a normal QL or 24 bit mode sprite which will be used by
an item in any of its statusses.

Alternative 1 above will ensure that your software remains compatible with older versions
of WMAN.

Sprite options

To provide for future expandability of the sprite format, a special bit in the sprite control
byte indicates whether the sprite definition is followed by an options long word or pointer. If
bit pto..opt is set, then this options long word or pointer must exist. At present, the
options longword is unused. It has not been decided yet whether this will be a pointer to
further options, or a bit map of further options. Thus, for the time being, this longword can be
ignored and even omitted UNLESS the sprite also contains a pointer to a sprite block (see
above), in which case the options longword MUST EXIST (and, for the time being should
beset to 0).

QPTR The Pointer Environment 154

Blob Definition

A blob is used to provide a mask through which a pattern is dropped into the screen. The
critical distinction is that while the pattern formed by a sprite moves with the sprite, the
pattern used with a blob is stationary. The effect is akin to removing a bit of the screen to
reveal the pattern underneath.

A blob definition, therefore, has only form, size, origin and pattern mask.

form 2 words
size 2 words
origin 2 words
colour pattern long word zero
pattern mask long word relative pointer
next definition long word relative pointer

Pattern Definition

A pattern definition allows the specification of any pixel in the pattern to be any colour or
transparent. The pattern repeats both horizontally and vertically. The pointer to the pattern
mask may be given as zero, in which case the pattern is solid.

A pattern definition has form, repeat, colour pattern and pattern mask.

form 2 words
repeat 2 words
origin 2 words zero
colour pattern long word relative pointer
pattern mask long word relative pointer (or 0)
next definition long word relative pointer

Area Mask

An area mask defines the limits of an area operation. The form is a table of x (horizontal)
limits for each y coordinate. There may be more than one table. The total storage required is:

2 + 6*x_size + 4*(sum of y_sizes) bytes

The form of the definition is

x_size number of tables
y_size length of this table
x_origin origin of sub-area within window
y_origin
table 2*y_size words lower limit, upper limit pairs
.... (relative to x_origin)

QPTR The Pointer Environment 155

Partial Save Area Format

The format of a partial save area is as follows:

spare long may be used by the application
flag word $4afc if this is a save area
x_size word width of save area in pixels
y_size word height of save area in pixels
increment word distance in bytes from one row to next
mode byte mode of saved image
spare byte zero
image increment*y_size bytes bit image

QPTR The Pointer Environment 156

Window Manager

Window Definition

Structure

The window definition is split into several levels: at the top there is the window definition.
Below this, there are the definitions of any loose menu items or sub-windows. Below these,
there are the definitions of the object lists.

This section gives the standard meanings of the window definition structures. However,
as it is the responsibility of the application's code to interpret the structures, the meanings
may vary.

The file keys_wdef contains definitions of the symbols used in this section: it may be
INCLUDEd in any assembler files that manipulate window definitions.

Within these definitions all pointers are word length relative pointers. Where reference is
to be made to an address which is more than a word offset away, the least significant bit is
set. This (after clearing the bit) is then a pointer to a long word containing a relative address.
All addresses are even. A zero pointer implies that the structure pointed to is absent.

In the following definitions, coordinates and sizes are specified as a pixel position or
number of pixels. To allow for continuously variable window sizes, some coordinates and
sizes can include terms to indicate the scaling of the coordinate or size with the variation in
the appropriate dimension of the window. This is masked into the top nibble of the coordinate
or size:

0000 invariant
0001 1:4 scaling wrt dimension
0010 1:2 scaling wrt dimension
0011 3:4 scaling wrt dimension
0100 directly coupled to dimension.

The rest of the word has the coordinate or size corresponding to the minimum allowable
window dimension.

To allow for a variety of different layouts within the window as the size of the window
varies, part of the window definition may be repeated several times. The definitions should
be made in order of decreasing window size. The last definition, which defines the smallest
allowable window, should be followed by a word containing -1. If the top nibble of a layout
size word is zero, then the layout may not be scaled: if it is 0100 then it may.

QPTR The Pointer Environment 157

Window definition

Fixed part of window definition

wd_xsize $00 word default window x size (width) in pixels
wd_ysize $02 word default window y size (height) in pixels
wd_xorg $04 word pointer x origin in window
wd_yorg $06 word pointer y origin in window
wd_wattr $08 window attributes
wd_psprt $10 word pointer to pointer sprite for this window
wd_lattr $12 loose menu item attributes
wd_help $2e word pointer to help window
wd_rbase $30 base of repeated part of window definition
Repeated part of window definition

wd_xmin $00 word x (minimum) size for this layout + scaling flag
wd_ymin $02 word y (minimum) size for this layout + scaling flag
wd_pinfo $04 word ptr to information sub-window definition list
wd_plitm $06 word pointer to loose menu item list
wd_pappl $08 word ptr to application sub-window definition list
wd.elen $0a repeated entry length

The origin of the window is the initial pointer position within the window. This will usually
also determine the position of the window itself as the window management level will try to
avoid moving the pointer. If the origin is given as zero, then the origin will be calculated from
the position of the current item.

The window width and height exclude the border and shadow, i.e. they refer to the inside
of the window.

The XMIN and YMIN sizes are actual sizes of the window, unless the most significant bit
is set in which case they are the minimum sizes.

Window Attributes

The window attributes for the window definition are four words defining a window clear
flag, the shadow depth, the border and paper. For sub-windows, the shadow depth should be
zero. For the main window the typical shadow depth will be 2, the actual x and y shadows
will be derived from this. The top bit of the clear flag is used to define whether or not the
(sub-)window should be cleared when it is (re-)drawn: if it is set then the window is not
cleared.

wda_clfg $00 byte MSbit clear to clear window
wda_shdd $01 byte shadow depth
wda_borw $02 word border width
wda_borc $04 word border colour
wda_papr $06 word paper colour

QPTR The Pointer Environment 158

Menu Item Attributes

To bring some semblance of order to the window organisation, all menu items within any
one window or sub-window are constrained to have the same attributes. There is one set of
attributes for each of the each of the three possible states of the item, and there is a border
attribute to indicate the item currently pointed to.

wda_curw $00 word current item border width
wda_curc $02 word current item border colour
wda_unav $04 item unavailable
wda_aval $0c item available
wda_selc $14 item selected
wda.elen $1c menu item attribute entry length

attribute record
wda_back $00 word item background colour
wda_ink $02 word text object ink colour
wda_blob $04 word pointer to blob for pattern
wda_patt $06 word pointer to pattern for blob

Lower Level Definitions

Loose Menu Items List

Loose menu items can be positioned anywhere within the window. The loose menu item
list is just a list of object types, positions, actions and pointers. The list is terminated by a
word containing -1.

wdl_xsiz $00 word hit area x size (width) + scaling
wdl_ysiz $02 word hit area y size (height) + scaling
wdl_xorg $04 word hit area x origin + scaling
wdl_yorg $06 word hit area y origin + scaling
wdl_xjst $08 byte object x justification rule
wdl_yjst $09 byte object y justification rule
wdl_type $0a byte object type (0=text, 2=sprite, 4=blob, 6=pattern)

negative for underlined text
wdl_skey $0b byte selection keystroke (upper case)
wdl_pobj $0c word pointer to object
wdl_item $0e word item number
wdl_pact $10 word pointer to action routine
wdl.elen $12 loose menu item list entry length

The selection keystroke should be the 'upper case' value for letters and the event code
(not the event number) for the event keystrokes. The event code is the event number less
14. It may also be convenient for the item number to be the same as the selection
keystroke/event code for these items. If the selection keystroke should be underscored
(which is for text items possible), then the type is text-position. Thus, if you wish to
underscore the third character, type is 0-3, giving -3.

QPTR The Pointer Environment 159

Information Sub-Window

An information sub-window is set up when the menu is set up, but has no further
significance. The definition of information sub-windows is in the form of a list terminated by a
word containing -1.

wdi_xsiz $00 word sub-window x size (width) in pixels + scaling
wdi_ysiz $02 word sub-window y size (height) in pixels + scaling
wdi_xorg $04 word sub-window x origin + scaling
wdi_yorg $06 word sub-window y origin + scaling
wdi_watt $08 sub-window attributes
wdi_pobl $10 word pointer to information object list
wdi.elen $12 information list entry length

The information sub-window origin is the pixel position of the top left hand corner of the
inside of the sub-window with respect to the top left hand corner of the window.

Information Object List

Each object in an information object list has only a limited set of attributes, and these may
be different for each object. The list for each information sub-window is terminated by a word
containing -1.

wdo_xsiz $00 word object x size (width) in pixels + scaling
wdo_ysiz $02 word object y size (height) in pixels + scaling
wdo_xorg $04 word object x origin + scaling
wdo_yorg $06 word object y origin + scaling
wdo_type $08 byte object type (0=text, 2=sprite, 4=blob, 6=pattern)
wdo_spar $09 byte spare = 0

(wdo_ink $0a word text ink colour type=0
(wdo_csiz $0c word text character size (two bytes)

or
(wdo_comb $0a word pattern or blob to combine type=4,6

wdo_pobj $0e word pointer to object
wdo.elen $10 information object list entry length

Application Sub-window List

Because the size of an application sub-window definition is dependent on the usage of
the definition, the application sub-window list is just a list of pointers to individual application
sub-window definitions. The list is terminated with a zero word.

QPTR The Pointer Environment 160

Menu Object Lists

Because menus are of indefinite size, the descriptions of the objects in a menu are put
into lists so that these may be set up at execution time.

It is assumed, by the menu interface, that the objects are arranged in a rectangular grid.
Each column of the grid has a fixed width, each row a fixed height. It was foreseen that the
interface also allow for an index to the columns and an index to the rows to be placed above
and to the left of the grid, but this is not implemented.

There are two dimensions, the first is the actual number of columns, the second is the
number of rows. All of the lists have either one dimension or the other.

Each of the object spacing lists consists of pairs of numbers. The first word is the hit area
width or height. the second number is the distance from the start of this hit area to the start of
the next. Both spacings are in pixels. There must be sufficient gap between the objects to
allow the current item border to be drawn.

Each of the object index lists has the same form as the object list described below. The
item numbers within these lists should be set to -1 and the action routine pointers to zero.

The object item lists consist of a set of list entries, one for each column in a row. Each
object list entry contains the item number for the object, the object type (text, sprite etc.), the
justification (left, right or centre, top, bottom or centre), a pointer to the actual object and a
pointer to an action routine to be called when the object is hit. Note that it is possible to have
just one large object list, which is 'cut up' into rows by making each row list start pointer equal
to the previous row list end pointer.

The justification rule bytes are zero for a centered object, positive for left or top justified
and negative for right or bottom justified. The value indicates the distance of the object, in
pixels, from the edge of the hit area.

The row list consists of pairs of pointers to the start and end of each object list.

QPTR The Pointer Environment 161

Application sub-window definition

wda_csiz $-06 word x and y csizes IF menu appsub window
wda_extd $-04 long “XTND” (key : wda_xtnd) marks extended defn
wda_xsiz $00 word sub-window x size (width) in pixels + scaling
wda_ysiz $02 word sub-window y size (height) in pixels + scaling
wda_xorg $04 word sub-window x origin + scaling
wda_yorg $06 word sub-window y origin + scaling
wda_watt $08 sub-window attributes
wda_pspr $10 word pointer to pointer sprite for this sub-window
wda_setr $12 word ptr to application sub-window setup routine
wda_draw $14 word ptr to application sub-window draw routine
wda_hit $16 word pointer to application sub-window hit routine
wda_ctrl $18 word ptr to application sub-window control routine
wda_nxsc $1a word maximum number of x control sections
wda_nysc $1c word maximum number of y control sections
wda_skey $1e byte application sub-window selection keystroke
wda_ext $1f byte zero
wda.blen $20 application sub-window basic definition length

* NB: index items are not implemented in current versions of the Pointer Environment

pannable and scrollable sub-windows only (wda_nxsc or wda_nysc <>0)

wda_part $00 word ptr to the part window control block (or 0)
for pan, scroll and split definitions

wda_insz $02 word index hit size + scaling
wda_insp $04 word index spacing left or above sub-wind.+scaling *
wda_icur $06 long index current item attr. (border width, colour) *
wda_iiat $0a index item attribute record *

 wda_psac $12 word pan or scroll arrow colour
 wda_psbc $14 word pan or scroll bar background colour
 wda_pssc $16 word pan or scroll bar section colour
 wda.clen $18 applic. sub-window control definition length

menu sub-windows only (processed by WM.SMENU called from application setup)

wda_mstt $00 word pointer to menu status block
wda_iatt $02 item attributes
wda_ncol $1e word number of actual columns
wda_nrow $20 word number of actual rows
wda_xoff $22 word x offset to start of menu (section)
wda_yoff $24 word y offset to start of menu (section)
wda_xspc $26 word pointer to x (column) spacing list
wda_yspc $28 word pointer to y (row) spacing list
wda_xind $2a word pointer to x (column) index list
wda_yind $2c word pointer to y (row) index list
wda_rowl $2e word pointer to menu row list
wda.mlen $30 sub-window menu definition length

The application sub-window origin is the pixel position of the top left hand corner of the
inside of the sub-window with respect to the top left hand corner of the window.

The pointers to the sub-window pan and scroll control blocks and the menu status block
are relative to the start of the window status area.

QPTR The Pointer Environment 162

If a window is both pannable and scrollable, then there should be two complete sub-
window control definitions.

If a spacing list consist of items of the same size, then the pointer to the spacing list may
be replaced by the negative spacing values.

menu object spacing list

wdm_size $00 word object hit size + scaling
wdm_spce $02 word object spacing + scaling
wdm.slen $04 object spacing list element length

menu row list
wdm_rows $00 word pointer to object row list start
wdm_rowe $02 word pointer to object row list end
wdm.rlen $04 menu row list element length

menu object / index list entry
wdm_xjst $00 byte object x justification rule
wdm_yjst $01 byte object y justification rule
wdm_type $02 byte object type (0=text, 2=sprite, 4=blob, 6=pattern)
wdm_skey $03 byte selection keystroke (upper case)
wdm_pobj $04 word pointer to object
wdm_item $06 word item number (-1 for index)
wdm_pact $08 word pointer to action routine (zero for index)
wdm.olen $0a menu object / index list entry length

The x and y csizes at wda_csiz correspond to the usual QL csizes (e.g. 0-3 for x, 0-1 for
y).

QPTR The Pointer Environment 163

Menu Macros

This section documents the action of the utility macros supplied in the file WMAN_MENU_
MAC. These macros assist in the generation of standard format Window Definitions by
automatically generating the XDEF and XREF directives required to use the definition: they
also relieve the programmer of the burden of remembering the size of each data item.

Most symbols generated by these macros have a four character prefix showing their type.
This means that in the user-supplied symbol, usually referred to as the name, only the first
four characters will be significant.

There is, of course, no need to use these macros to generate Window Definitions: in
particular, any constraint of size and label name is imposed only by these macros, and not
by the data structures themselves. Modification of the macros, or direct generation of the
definition, is definitely recommended if you can't get the effect you want.

Structure

The major data structure produced by the macros is the Window Definition. This is of the
form documented in the previous section of this manual, and is thus appropriate for
conversion to its Working Definition by the WM.SETUP routine of the Window Manager. Each
of an application's Window Definitions has a unique name, and may be referred to by using
the label MEN_name which is XDEFfed by the WINDOW macro, and may be XREFfed where
required.

A Window Definition consists of one or more layouts, each appropriate for a different size
of window. One of these is selected by the WM. SETUP routine for copying into the Working
Definition, depending on the size requested. Each layout is given a unique letter when
introduced by the SIZE_OPT macro: when the SETWRK macro is invoked at the end of the
menu assembly, symbols of the form WWletter.name are XDEFfed, defining the space
required for the Working Definition for each layout. These may be referred to in other
modules by declaring the symbol with an XREF.S directive. Different layouts for a window
may be put in different files: the main definition is introduced with the WINDOW macro, and
has the various layouts introduced with the SIZE_OPT macro: the external layout
definition(s) start with the XLAYOUT macro, and define the layouts specified by calls to the
LAYOUT macro.

In addition to creating the Window Definition, the macros also keep track of the size of
Status Area required. In principle, the statuses of the items in a window may be static, so
that when the window is pulled down again previously selected options are still selected. To
cater for this, the status blocks for a given window are defined as COMMON blocks of the
required size: each layout defines its own blocks, but with the same name, so that when
linked the largest version of each COMMON block is used. One COMMON block is defined for
the base area and loose item status block, one for each menu status block and control
block, and one for each item allocated space with a call to the ALCSTAT macro. By using the
COMMON DUMMY option in the linker command file, no space is allocated in the application for
the status areas, resulting in ROMable code. The global status area for all windows may then
be put in the application's data space, if this is big enough, or in a suitably-sized piece of
heap allocated when the application starts. If this area is always pointed to by Ax, then the
status area for a given window will be found at WST _name(Ax), this label having been
defined by an XREF.S directive. Note that this limits you to a maximum global status area
size of 32k. Often A5 or A6 will be used to point to the global status area, as they are not
used by the Window Manager.

QPTR The Pointer Environment 164

Rules and reserved symbols

Within the body of a description, the macro substitution syntax of [name] is used where
the value of the variable or macro parameter name is meant: in general, macro parameters
are in Courier and global variables in UPPER_CASE. New variables and labels may be
created from global and local variables: for instance, the ACTION macro is of the form:

ACTION MACRO name
...
XREF MEA_[name]
...
ENDM

An invocation of this macro might be:

ACTION QUIT

producing the expansion:
...
XREF MEA_QUIT
...

At the start of a definition, the square brackets take their usual meaning of defining an
optional parameter.

The variables CLAYOUT, CURRA, CURRW, MAXITEM and WSIZES are used by the macros,
and should not be used for other purposes.

The prefixes shown below are used by the macros, for the purposes specified. In general,
you should avoid using any symbol with these prefixes in your own code. Those marked
external are XDEFfed or XREFfed by the macros. Those marked var(iable) are used as
assembler variables to keep track of which layout(s) the corresponding object is used in.

QPTR The Pointer Environment 165

Prefix External Var Use

MAD_ Label for application sub-window definition

Y Layouts using this sub-window

MAW_ Y Label for application sub-window list

Y Layouts using this application sub-window list

MEK. Y Value of item select key

MEA_ Y Label of externally defined code:

MEC_ this may be an Action/Hit, Control,

MED_ Drawing or Menu-setup routine.

MEM_

MEB_ Y Label of externally defined objects:

MEP_ these may be a Blob, Pattern,

MES_ Sprite or Text.

MET_

MIO_ Label for an info. object list

Y Layouts using this list

MIW_ Label for an info. sub-window list

Y Layouts using this list

MLI_ Label for a loose item list

Y Layouts using this list

MOB_ Label for menu sub-window or (first) index object

Y Layouts using this object

MPS_ Y Label for externally-accessible co-ordinates

MRW_ Label for menu sub-window row list

Y Layouts using this row list

MST_Y Offset of menu sub-window status block from

start of global status area

MSX_ Label for X or Y spacing list

MSY_ Y Layouts using this spacing list

MV_ Y Label for space in global status area allocated

by ALCSTAT macro

NCX. Y Number of control sections in the

NCY. X or Y direction for a menu sub-window

WAL_ Y Start of ALCSTAT area in global status area

Variable holds running total of space needed

WCX_ Y Offset of X or Y section control block

WCY_ from start of global status area

WST_ Y Offset of window status area from start of global status area

WWx. Y Size of Working Definition needed for layout x

QPTR The Pointer Environment 166

The macros defined in the keys_menu_mac file are as follows:

ACTION name
Generates a relative pointer to an action routine. This is external to the menu definition,

and should have the label MEA_[name].

ALCSTAT name,space
This reserves some extra space in the global status area, which can be accessed at the

offset MV_[name] from the base of this global status area: this offset will always be even.
The amount of space reserved is given by the value of the space parameter. The offset
should be referred to in the code by using the XREF.S directive.

APPN name
Generates a relative pointer to the application sub-window list for this layout. This should

have the label MAW _[name] and will have an XREF generated for it if CLAYOUT has the
value "*", which implies an externally-defined layout.

If CLAYOUT does not have the value "*", then a variable with the name MAW_[name] is
updated: if it already exists, then this application sub-window list is used by several layouts,
and the value of CLAYOUT is appended to it. If the variable is undefined, then it is initialised
to the current value of CLAYOUT.

ARROW colour
Define the colour of the arrows in the pan or scroll arrow rows.

A_CTRL name,dirn
Introduces an application sub-window control definition, defining a pointer, relative to the

start of the window status area, where the section control block starts, and generating an
externally accessible offset WC[dirn]_[name] which may be used by coding a suitable
XREF.S directive in the code wishing to use it. The size of section control block is given by
the maximum number of sections, which will have been previously defined by a call to the
CTRLMAX macro, and kept in the variable NC[dirn]_[name].

A_END
This generates the termination for an application sub-window list: it is not interchangeable

with I_END etc., as the terminators are different.

A_OBJE name
This marks the end of a menu sub-window object list, defining the label MOB_[name] so

that the row list can point to the end of the list. It also defines a COMMON block for the menu
item statuses, which may be found at the offset MST_[CURRA] from the base of the global
status area: [CURRA] is the name of the application sub-window currently being defined.

QPTR The Pointer Environment 167

A_MENU
Introduces the menu definition section of an application sub-window, and generates a

relative pointer to the menu status block.

A_RLST name
This introduces a menu sub-window row list, and labels it MRW_[name]. It also sets the value

of CLAYOUT to the value of the variable MRW_[name].

A_SLST name,dirn
This introduces a menu sub-window spacing list, and labels it MS[dirn]_[name]. It also

sets the value of CLAYOUT to the value of the variable MS[dirn]_[name].

The parameter dirn may take the values "X" or "Y".

A_WDEF name
This introduces an application sub-window definition, and labels it MAD_[name]. It also

sets the value of CLAYOUT to the value of the variable MAD_[name], and CURRA to

[name].

A_WINDW name
This generates a relative pointer to an application sub-window definition, which must be

internal to this layout. The label used is MAD_[name], this being generated by the A_WDEF
macro. A variable MAD_[name] is also set to the current value of CLAYOUT.

A_WLST name
This macro introduces an application sub-window list. It generates a label MAW _[name]

and reads a new value for the variable CLAYOUT from the variable MAW_[name], which will
have been defined by a call to APPN or LAYOUT.

The effect of this is to ensure that the list can be pointed to from elsewhere in the
definition, and that the space required for the application sub-windows can be added up in
the appropriate layout variable.

BAR background,block
Define the colours of the "thermometer" bar to the right or bottom of an application sub-

window. The visible part of the window is represented as a bar of the block colour, on a bar
representing the whole height or width of the menu, of the background colour.

BLOB name
Generates a relative pointer to a blob definition. This is external to the menu definition,

and should have the label MEB_[name].

QPTR The Pointer Environment 168

BORDER size,colour
Generates the definition of a border to be put around an item when the pointer is pointing

to it. Usually followed by one or three IATTR definitions defining the attributes of the item
itself.

CSIZE xsize,ysize
This defines the character size for an information item: the usual range of xsize from 0

to 3 and ysize from 0 to 1 applies.

CTRL name
Generates a relative pointer to an application sub-window control routine. This is external

to the menu definition, and should have the label MEC_[name].

CTRLMAX xsects,ysects
This defines the maximum number of sections into which an application sub-window may

be split. It also keeps a record of these numbers in the variables NCX.[CURRA] and NCY.
[CURRA], so that when the control definition is encountered the correct amount of space
can be allocated in the status area.

DRAW name
Generates a relative pointer to an application sub-window drawing routine. This is

external to the menu definition, and should have the label MED_[name].

HELP label
Generates a relative pointer to the help definition. Since the meaning of this pointer is

dependent on the application, the label is used directly, without adding a prefix: the label is
assumed to be external, so an XREF is generated.

IATTR paper,ink,blob,pattern
Generates part of a definition of the attributes to be used when drawing loose menu

items, index items or menu sub-window items. The blob and pattern are external, with
labels MEB_[blob] and MEP_[pattern] respectively. Loose and sub-window items
should have three sets of attributes, one for each of the three possible statuses unavailable,
available and selected. Index items do not have variable status, so only need one set of
attributes. The object to be drawn is combined with one or more of the attributes, depending
in its type:

Object type Attribute

paper ink blob pattern

TEXT Y Y

SPRITE Y

BLOB Y Y

PATTERN Y Y

QPTR The Pointer Environment 169

IBAR size,spacing[,szscale,spscale]
Define the size and spacing of an index bar. Optionally these may be scaled. The spacing

is measured above or to the left of the application sub-window.

ILST name
Generates a pointer to an index object list, which is internal to the definition and must be

labelled MOB_[name]. The variable of the same name is given the value of CLAYOUT.

INFO name
Generates a relative pointer to the information sub-window list for this layout. This should

have the label MIW_[name] and will have an XREF generated for it if CLAYOUT has the
value "*".

If CLAYOUT does not have the value "*", then a variable with the name MIW_[name] is
updated in the same way as in the APPN macro.

INK colour
This macro defines the ink colour for an information item.

ITEM number
Defines the item number for a loose or menu object: more than one object may share an

item number, in which case they will share a status byte and therefore all be drawn with the
same status.

If the value of the variable CURRA is not "*", then it is assumed that the object being
defined is in a menu sub-window, and the maximum item number for that sub-window is
updated if required, this being kept in the variable MST_[CURRA]: otherwise the variable
MAXITEM is updated. In this way it is possible to have "holes" in the item numbers, but still
get the correct size of status area allocated.

I_END
Generates an end-of-list marker for information sub-window and object lists.

I_ITEM
This introduces an information item: it is this macro that adds to the space requirements

for the current layout(s), given by the value of the variable CLAYOUT.

I_OLST name
This introduces an information object list, generating a label MIO_[name]. The variable

CLAYOUT is set to the value of the variable MIO_[name].

I_WINDW
This introduces an information sub-window: it is this macro that adds to the space

requirements for the current layout(s), given by the value of the variable CLAYOUT.

QPTR The Pointer Environment 170

I_WLST name
This macro introduces an information sub-window list. It generates a label MIW_[name]

and reads a new value for the variable CLAYOUT from the variable MIW_[name].

The effect of this is to ensure that the list can be pointed to from elsewhere in the
definition, and that the space required for the information sub-windows can be added up in
the appropriate layout variable.

JUSTIFY xjst,yjst
Define the justification required for an item: an item may be centred in the area available

or be positioned a fixed distance from either margin. A parameter value of zero requests a
centred object, a positive non-zero value is an offset from the left or top, and a negative
value an offset from the right or bottom.

LAYOUT letter,[info],[loos],[appn]
This specifies one of the layouts that is to be defined in this file, in a similar way to the

SIZE_ OPT macro, but is used in a separate layout file, after the XLAYOUT. It should not be
used in a main definition file.

The names of the information sub-window list, loose item list and application sub-window
list may be omitted if the layout does not contain such a list, but the commas must be coded
so that the correct internal labels are generated.

LOOS name
Generates a relative pointer to the loose item list for this layout. This should have the

label MLI_[name] and will have an XREF generated for it if CLAYOUT has the value "*".

If CLAYOUT does not have the value "*", then a variable with the name MLI_[name] is
updated in the same way as in the APPN macro.

L_END
Terminates a loose item list, and generates a COMMON block definition for a window status

area big enough for the maximum loose item number, given in the MAXITEM variable.

L_ILST name
This macro introduces a loose item list. It generates a label MLI_[name] and reads a

new value for the variable CLAYOUT from the variable MLI_[name]. In addition, the variable
MAXITEM is initialised to zero, and CURRA to "*".

The effect of this is to ensure that the list can be pointed to from elsewhere in the
definition, and that the space required for the loose items will be added up in the appropriate
variable.

L_ITEM [name,number]
This introduces a loose item: it is this macro that adds to the space requirements for the

current layout, given by the value of the variable CLAYOUT. If name and number are
supplied, a label MLI .[name] is defined and set to the value of number, also a label MLO.
[name] which is the position of the item in the list, counting from 0.

QPTR The Pointer Environment 171

MENSIZ ncols,nrows
This defines the size of a menu sub-window in terms of rows and columns, and therefore

the sizes of the spacing lists, index item lists (if present), and row list.

OBJEL [name]
Introduces a menu sub-window object definition: if the name is supplied then the object is

given the label MOB_[name] and CLAYOUT is given the value of the MOB_[name] variable.

OLST name
Generate a relative pointer to an information object list. This must be internal to the

definition, and have the label MIO_[name]. A variable of the same name is defined to have
the same value as the variable CLAYOUT, so that the space occupied for the object list can
be attributed to the appropriate layout.

ORIGIN xpos,ypos[,xscale,yscale]
Generates a two word origin definition for a window, sub-window or object. A window's

origin specifies the point within it where the pointer should be placed when the window is
drawn - this will be combined with the current pointer position to decide the absolute origin of
the window.

The origin of a sub-window or object is always specified relative to the window containing
it. Optionally a scale factor may be provided to specify how the origin should be changed if
the

window is bigger than expected. See the Window Definition section of the Data
Structures for details on how scale factors work.

PATTERN name
Generates a relative pointer to a pattern definition. This is external to the menu definition,

and should have the label MEP_[name].

POSN name,xsize,ysize[,xscale,yscale]
Generates a scaled co-ordinate pair in the same way as the ORIGIN macro, and labels

the data MPS_[name]. This label is XDEFfed so that the co-ordinates can be used from
other parts of the program.

ROWEL start,end
Generate one element of a row list, consisting of a pair of relative pointers to the start and

end menu sub-window objects: the start pointer points to the first object, the end points
just after the last. The labels used must be internal to the definition, and have the symbols
MOB_[start] and MOB_[end]. Two variables of the same names are given the current
value of the CLAYOUT variable.

RLST name
Generates a relative pointer to a rowlist, which is internal to the definition and must be

labelled MRW_[name]. A variable of the same name is given the current value of CLAYOUT.

QPTR The Pointer Environment 172

SELKEY [name]
Generate a select key for a loose or menu item. The value of the select key is an external

symbol MEK.[name]: this allows the programmer to have one file containing all select keys
(and text), which is then the only file that needs to be changed to make foreign language
versions of the program.

If name is not supplied, a select key of 0 is defined, which can never occur (it is trapped
out by the Window Manager).

SETR name
Generates a relative pointer to an application sub-window setup routine. This is external

to the menu definition, and should have the label MEM_[name].

SETWRK
This macro must always be coded at the very end of a window or layout definition: it

defines the external symbols giving the space required for the working definitions of the
various possible size-dependent layouts. In addition it generates a COMMON section
declaration and external definition for any extra space required in the global status area as a
result of calls to ALCSTAT.

SIZE xsize,ysize[,xscale,yscale]
Generates a two-word size definition for a window, sub-window or object. The size of a

window is the actual area that can be used, any border defined is added to the outside.

Optionally a scale factor may be provided to specify how the size should be changed if
the window is bigger than expected. See the Window Definition section of the Data
Structures for details on how scale factors work.

SIZE_OPT letter *
This introduces an entry in the repeated part of the window definition: each entry gives a

possible size that the window can have, and pointers to the various parts of the layout for this
size.

The value of the parameter is kept in the variable CLAYOUT for future use.

If the * option is coded, the layout is assumed to be external, and XREFs will be
generated for the pointers to the loose item list, information sub-window list, and application
sub-window list.

If a letter is coded, then the layouts are assumed to be in the current file. In this case
the variables WW[letter] .[CURRW] and WS[letter].[CURRW] are initialised to
suitable values: these are used during the later stages of the menu definition to calculate the
sizes required for the working definition and status area for this layout. The [letter] is
also appended to the WSIZES variable.

SOFFSET xoff,yoff
This defines the offset of the top left object from the top left of a menu sub-window, so

you don't have to squash everything up into the top left corner.

SPARE

QPTR The Pointer Environment 173

Generates a null byte to fill up spare space. Only required after the definition of an
application sub-window's select key.

SPCEL gap,size
This generates one element of a row or column spacing list, defining the horizontal or

vertical hit size of a column or row, and the gap between the column or row and the next.

SLST xnam,ynam
This generates two relative pointers to the X and Y spacing lists, which should be labelled

MSX_[xnam] and MSY_[ynam]. Two variables of the same names are set to the current
value of CLAYOUT.

SPRITE name
Generates a relative pointer to a sprite definition. This is external to the menu definition,

and should have the label MES_[name].

S_END
Terminates the list of layouts in the repeated part of a window definition.

TEXT name
Generates a relative pointer to a string. This must be external to the menu definition, and

should have the label MET_[name]. This allows the programmer to have one file containing
all text (and select keys), which is then the only file that needs to be changed to make foreign
language versions of the program.

TYPE code
Specifies the type of a loose, information or menu object. The value of code may be 0 for

a text item, 2 for a sprite and so on: suitable symbols are defined in the keys_wman file.

WATTR shadow,border_size,border_colour,paper
Generates data describing the overall colour of a window or sub-window. The shadow is

ignored in the case of sub-windows. The border_size is added to the specified window
size.

WINDOW name
Generates an externally accessible label MEN_[name] which points to the Window

Definition.

The variable CURRW is set to [name] so that various unique symbols may be defined and
XDEFfed at a later stage.

The variable WSIZES is set to the null string: this is added to by SIZE_OPT, and used in
SETWRK to generate XDEFs for each possible size.

XLAYOUT name

QPTR The Pointer Environment 174

This introduces a set of layout definitions in a similar way to WINDOW introducing the main
part of a window definition. It is associated with the appropriate main definition by having the
same [name], which is assigned to the CURRW variable as in WINDOW.

QPTR The Pointer Environment 175

Text Macros

The file keys_mac_text contains a set of macros which are used for defining text
strings, often for use in menus. Several different flavours are provided, depending on the use
to which the text is going to be put. The merit of this approach is that all text used in an
application may be put into one file, and different versions of this file with the text in different
languages linked with the rest of the application (all of which should be language-
independent) to produce foreign language versions.

All the macros take one or more string parameters. Each of these should consist of of
the characters you wish to appear in the text, enclosed in braces {}. This is a convention
used by the GST Macro Assembler to allow the use of strings with spaces in them as macro
parameters. All the macros use this parameter to generate a QDOS format string at an even
address with a 1-word character count at the beginning.

Note that you cannot use the open square bracket character "[" either within a string or as
a select key when you are using the GST Macro Assembler, as this character is always
interpreted as the beginning of a macro substitution. If you do need to use the open square
bracket, you will need to code the ASCII value (91 or $5B) in a DC.x directive of your own
making.

The MKTEXT macro uses the variables MKT.PRM and MKT.PRMX, so you should avoid
using these variables when using the text generating macros.

Label and variable prefixes used by these macros are as follows:

Prefix External Var Use
MEK. Y Item select key definition
MET_ Y Text string label
MET. Y Text string length/2 in pixels

In the following macro definitions, square brackets in the heading line enclose an optional
parameter, braces enclose a parameter that may be repeated more than once. Within the
body of a definition, the square brackets signify the value of a supplied parameter: see the
beginning of the previous section for an example.

MKSELK label,selkey
Generates an external symbol MEK.[label] whose value is that given by the one

character string passed in selkey. If the character was in the range "a" to "z" then the upper
case equivalent is used, as select keys are required to be defined in upper case. This macro
is of use when defining a select key for a graphics object such as a sprite.

MKSTR string
This is the simplest of the macros. It generates a QDOS string but no extra information.

QPTR The Pointer Environment 176

MKTEXT label{,string}
This macro is used to generate a large block of text which has to be defined over many

lines of source code. The resulting single string is labelled MET_[label]. All parameters
after the label name should be strings enclosed in braces, and these are concatenated to
produce the result. If you wish to force a newline at any point then you may code a
backslash character "\" as the last character of any string - this will then be translated into a
newline character (ASCII value 10 or $0A). A backslash within a string is not translated.

MKTITL label,string
Generates a string for use as a large title. Two external symbols are defined,

MET_[label] labels the string itself and MET.[label] gives half the length of the string, in
pixels, if written out with CSIZE 2,n. This symbol may be referred to by an XREF.S directive
and used to centre the title in an information sub-window. Another macro is used for strings
written with a smaller character size, as the GST Macro Assembler does not allow
multiplication or division of external-ly-defined symbols.

MKTITS label,string
Generates a string for use as a small title. Two external symbols are defined,

MET_[label] labels the string itself and MET.[label] gives half the length of the string, in
pixels, if written out with CSIZE 0,n. This symbol may be referred to by an XREF.S directive
and used to centre the title in an information sub-window. Another macro is used for strings
written with a larger character size, as the GST Macro Assembler does not allow
multiplication or division of exter-nally-defined symbols.

MKXSTR label,[selkey],string
Generates a string for use as a loose menu item or menu object. The string itself is

defined as usual, with the symbol MET_[label] being used to refer to it. Optionally a select
key may be defined by specifying a non-null value for the selkey parameter. This should be
a one character string, preferably enclosed in braces for consistency. If supplied, the symbol
MEK.[label] is defined to have the value of this character: if the character is in the range
"a" to "z" then the upper case equivalent will be used.

QPTR The Pointer Environment 177

Index of macros
The macros are summarised in alphabetical order, together with which file they are

defined in and a short description of the structure each generates. Those marked MENU are
in the file keys_mac_menu, those marked TEXT are in the file keys_mac_text.

ACTION MENU pointer to action routine
ALCSTAT MENU space in global status area
APPN MENU pointer to application sub-window list
ARROW MENU arrow colour for pan/scroll bars
A_CTRL MENU start of control definition
A_END MENU end of application sub-window list
A_MENU MENU start of menu definition
A_OBJE MENU end of menu object list
A_RLST MENU start of menu row list
A_SLST MENU start of menu spacing list
A_WDEF MENU start of application sub-window
A_WINDW MENU pointer to application sub-window
A_WLST MENU start of application sub-window list
BAR MENU pan/scroll "thermometer" colours
BLOB MENU pointer to blob
BORDER MENU border size and colour for current item
CSIZE MENU character size for information text
CTRL MENU pointer to control routine
CTRLMAX MENU maximum number of control sections
DRAW MENU pointer to sub-window drawing routine
HELP MENU pointer to help definition
IATTR MENU item status attributes
IBAR MENU size and spacing of index items
ILST MENU pointer to index item list
INFO MENU pointer to information sub-window list
INK MENU ink colour for information text
ITEM MENU item number for loose or menu item
I_END MENU end of information window or object list
I_ITEM MENU start of information object
I_OLST MENU start of information object list
I_WINDW MENU start of information sub-window
I_WLST MENU start of information sub-window list
JUSTIFY MENU justification rules for loose or menu item
LAYOUT MENU start of external layout definition
LOOS MENU pointer to loose item list
L_END MENU end of loose item list
L_ILST MENU start of loose item list
L_ITEM MENU start of loose item
MENSIZ MENU size of menu in columns/rows
MKSELK TEXT item select keystrokes
MKSTR TEXT QDOS string, no label
MKTEXT TEXT multi-line text
MKTITL TEXT large title string
MKTITS TEXT small title string
MKXSTR TEXT external string with select keystroke
OBJEL MENU start of menu object definition
OLST MENU pointer to information object list
ORIGIN MENU origin of window or object
PATTERN MENU pointer to pattern

QPTR The Pointer Environment 178

POSN MENU externally-accessible ORIGIN
ROWEL MENU row list element
RLST MENU pointer to row list
SELKEY MENU select keystroke for loose or menu item

SETR MENU pointer to setup routine
SETWRK MENU end of entire window definition
SIZE MENU size of window or object
SIZE_OPT MENU start of internal layout definition
SOFFSET MENU offset from top left of menu sub-window
SPARE MENU spare padding byte
SPCEL MENU spacing list element
SLST MENU pointers to spacing lists
SPRITE MENU pointer to sprite
S_END MENU end of layout list
TEXT MENU pointer to text
TYPE MENU object type
WATTR MENU overall window attributes
WINDOW MENU start of entire window definition
XLAYOUT MENU start of external layout definitions

QPTR The Pointer Environment 179

Working Definition
To allow a very large degree of flexibility in the handling of windows and menus, the

actual definition of a window used by the window management routines is set up during
execution. Because this definition will usually be set up before pulling down a window, and
discarded after throwing the window away, this is referred to as the working definition.

The window definition is principally a definition of a pull-down window. It may, however,
include definitions of menus within the window. The window working definition is a copy of
the window definition, with the addition of the definitions of menus whose contents are
defined at execution time. The form of the working definition is chosen to simplify menu
handling.

Within a window, it is likely that sub-windows will exist which are either menus in a non-
standard form, or not menus at all. In either of these cases the corresponding part of the
window working definition may be absent or of non-standard form.

Within the working definition all pointers are long word absolute pointers. All addresses
are even. A zero pointer implies that the structure pointed to is absent.

The file WMAN _WWORK contains definitions of the symbols used in this section: it may be
INCLUDEd in any assembler files that manipulate working definitions.

Header block
The working definition starts with a header block. This has three functions: the first is to

save the window channel ID, the original window definition address and the window status
area address; the second is to point to the pointer record, to save the pointer position as it
was before the window was opened, and to flag whether the window is a primary or a pull-
down (secondary); the third is to provide the sprite list for the base level of the pointer
interface.

ww_wstat $00 long pointer to window status area
ww_wdef $04 long pointer to window definition
ww_chid $08 long channel ID for window
ww_pprec $0c long pointer to pointer record (24 bytes)
ww_psave $10 long saved pointer position (absolute coordinates)
ww_spar1 $14 long window spare 1
ww_spar2 $18 word window spare 2
ww_spar3 $1a byte window spare 3
ww_pulld $1b byte flag, <>0 if pulled down
ww_splst $1c long pointer to sub-window sprite list

The channel ID is set when the window is opened by the window open routine.

The pointer position is saved when the window is opened, and restored when the window
is thrown away.

QPTR The Pointer Environment 180

Window definition block

The header block is immediately followed by the window definition block:

ww_xsize $20 word window x size (width) in pixels
ww_ysize $22 word window y size (height) in pixels
ww_xorg $24 word pointer x origin in window
ww_yorg $26 word pointer y origin in window
ww_wattr $28 window attributes
ww_psprt $30 long pointer to pointer sprite for this window
ww_lattr $34 loose menu item attributes
ww_help $5c long pointer to help definition
ww_head $60 end of header
ww_ninfo $60 word number of information sub-windows
ww_ninob $62 word number of information sub-window objects
ww_pinfo $64 long ptr to information sub-window definition list
ww_nlitm $68 word number of loose menu items
ww_plitm $6a long pointer to loose menu item list
ww_nappl $6e word number of application sub-windows
ww_pappl $70 long ptr to application sub-window definition list
ww_lists $74 start of definition lists

The window width and height exclude the border and shadow, i.e. they refer to the inside
of the window.

The origin of the window is the position of the top left hand corner of the inside of the
window is display coordinates.

Window Attributes

The window attributes for the working definition are identical to those for the window
definition.

wwa_clfg $00 byte MSbit set to clear window
wwa_kflg $00 byte Bit 0 set disables keys moving the mouse
wwa_shdd $01 byte shadow depth
wwa_borw $02 word border width
wwa_borc $04 word border colour
wwa_papr $06 word paper colour

QPTR The Pointer Environment 181

Menu Item Attributes

The menu item attributes for the working definition are similar to those for the window
definition. They occupy rather more space as they use long word pointers.

wwa_curw $00 word current item border width
wwa_curc $02 word current item border colour
wwa_attr $04 attribute records
wwa_unav $04 item unavailable
wwa_aval $10 item available
wwa_selc $1c item selected
wwa.elen $28 menu item attribute entry length

attribute record

wwa_back $00 word item background colour
wwa_ink $02 word text object ink colour
wwa_blob $04 long pointer to blob for pattern
wwa_patt $08 long pointer to pattern for blob
wwa.alen $0c attribute record length

Loose Menu Items List

Loose menu items can be positioned anywhere within the window. The loose menu item
list is just a list of object types, positions, actions and pointers. The list is terminated by a
word containing -1. Apart from the use of long word pointers, the loose menu item list is the
same as in the window definition.

wwl_xsiz $00 word hit area x size (width)
wwl_ysiz $02 word hit area y size (height)
wwl_xorg $04 word hit area x origin
wwl_yorg $06 word hit area y origin
wwl_xjst $08 byte object x justification rule
wwl_yjst $09 byte object y justification rule
wwl_type $0a byte object type (0=text, 2=sprite, 4=blob, 6=pattern)

negative: text with underlining
wwl_skey $0b byte selection keystroke (upper case)
wwl_pobj $0c long pointer to object
wwl_item $10 word item number
wwl_pact $12 long pointer to action routine
wwl.elen $16 loose menu item list entry length

The selection keystroke should be the 'upper case' value for letters and the event code
(not the event number) for the event keystrokes. The event code is the event number less
14.

QPTR The Pointer Environment 182

Information Sub-Window

An information sub-window is set up when the menu is set up, but has no further
significance. The definition of information sub-windows is in the form of a list terminated by a
word containing -1. Apart from the use of long word pointers, the information sub-window list
is the same as in the window definition.

wwi_xsiz $00 word sub-window x size (width) in pixels
wwi_ysiz $02 word sub-window y size (height) in pixels
wwi_xorg $04 word sub-window x origin
wwi_yorg $06 word sub-window y origin
wwi_watt $08 sub-window attributes
wwi_pobl $10 long pointer to information object list
wwi.elen $14 information list entry length

The information sub-window origin is the pixel position of the top left hand corner of the
inside of the sub-window with respect to the top left hand corner of the window.

Information Object List

Each object in an information object list has only a limited set of attributes, which may be
different for each object. The list for each information sub-window is terminated by a word
containing -1.

wwo_xsiz $00 word object x size (width) in pixels
wwo_ysiz $02 word object y size (height) in pixels
wwo_xorg $04 word object x origin
wwo_yorg $06 word object y origin
wwo_type $08 byte object type (0=text, 2=sprite, 4=blob, 6=pattern)
wwo_spar $09 byte spare

(wwo_ink $0a word text ink colour type=0
(wwo_csiz $0c word text character size (two bytes)

or
(wwo_comb $0a long pattern or blob to combine type=4 or 6

wwo_pobj $0e long pointer to object
wwo.elen $12 information object list entry length

Application Sub-window List

Because the size of an application sub-window definition is dependent on the usage of
the definition, the application sub-window list is just a list of long word pointers to individual
application sub-window definitions. The list is terminated with a zero long word.

QPTR The Pointer Environment 183

Application sub-window definition

wwa_xsiz $00 word sub-window x size (width) in pixels
wwa_ysiz $02 word sub-window y size (height) in pixels
wwa_xorg $04 word sub-window x origin
wwa_yorg $06 word sub-window y origin
wwa_watt $08 sub-window attributes
wwa_pspr $10 long pointer to pointer sprite for this sub window
wwa_draw $14 long ptr to application sub-window draw routine
wwa_hit $18 long pointer to application sub-window hit routine
wwa_ctrl $1c long pointer to sub-window control routine (or 0)
wwa_nxsc $20 word maximum number of x control sections
wwa_nysc $22 word maximum number of y control sections
wwa_skey $24 byte application sub-window selection keystroke
wwa_xcsz $26 byte csize x (0...3) for text menu items
wwa_ycsz $27 byte csize y (0 or 1) for text menu items
wwa.blen $28 application sub-window basic definition length

Two control definitions, of the following structure, will always be present. The first will only
be set up (non-zero) for pannable sub-windows, the second only for scrollable sub-windows.

wwa_part $28 long ptr to the part window control block (or 0)
for pan, scroll and split definitions

wwa_insz $2c word index hit size + scaling
wwa_insp $2e word index spacing left or above sub-window + scaling *
wwa_icur $30 long index current item attr. (border width, colour) *
wwa_iiat $34 index item attribute record *
wwa_psac $40 word pan or scroll arrow colour
wwa_psbc $42 word pan or scroll bar colour
wwa_pssc $44 word pan or scroll bar section colour
wwa.clen $1e applic. sub-window control definition length

* NB: index items are not implemented in current versions of the Pointer Environment

menu sub-windows only:

wwa_mstt $64 long pointer to the menu status block
wwa_iatt $68 item attributes
wwa_ncol $90 word number of actual columns
wwa_nrow $92 word number of actual rows
wwa_xoff $94 word x offset to start of menu (section)
wwa_yoff $96 word y offset to start of menu (section)
wwa_xspc $98 long pointer to x (column) spacing list
wwa_yspc $9c long pointer to y (row) spacing list
wwa_xind $a0 long pointer to x (column) index list
wwa_yind $a4 long pointer to y (row) index list
wwa_rowl $a8 long pointer to menu row list
wwa.mlen $48 length of menu working definition

The application sub-window origin is the pixel position of the top left hand corner of the
inside of the sub-window with respect to the top left hand corner of the window.

If you supply a negative spacing value instead of a pointer to the spacing list, then all
rows or columns are treaded as being of the same size.

The two control definitions must be present for all application sub-windows, but need only
be set up if the sub-window is pannable (wwa_nxsc<>0) or scrollable (wwa_nysc<>0).

QPTR The Pointer Environment 184

Menu Object Lists

It is assumed, by the menu interface, that the objects are arranged in a rectangular grid.
Each column of the grid has a fixed width, each row a fixed height. The interface also allows
for an index to the columns and an index to the rows to be placed above and to the left of the
grid.

There are two dimensions, the first is the actual number of columns, the second is the
number of rows. All of the lists have either one dimension or the other.

Each of the object spacing lists consists of pairs of numbers. The first is the hit area width
or height, the second is the distance from the start of this hit area to the start of the next.
Both spacings are in pixels. There must be sufficient gap between the objects to allow the
current item border to be drawn.

Each of the object index lists has the same form as the object item list described below.
The item numbers within these lists should be negative, and the action routine pointers zero.

The object item lists consist of a set of list entries, one for each column in a row. Each
object list entry contains the item number for the object, the object type (test, sprite etc.), the
justification (left, right or centre, top, bottom or centre), a pointer to the actual object and a
pointer to an action routine to be called when the object is hit. Note that it is possible to have
just one large object list, which is 'cut up' into rows by making each row list start pointer equal
to the previous row list end pointer.

The justification rule bytes are zero for a centered object, positive for left or top justified
and negative for right or bottom justified. The value indicates the distance of the object, in
pixels, from the edge of the hit area.

The row list consists of pairs of pointers to the start and end of each object list.

menu object spacing list
wwm_size $00 word object hit size
wwm_spce $02 word object spacing
wwm.slen $04 object spacing list element length

menu row list
wwm_rows $00 long pointer to object row list start
wwm_rowe $04 long pointer to object row list end
wwm.rlen $08 menu row list element length

menu object / index list entry
wwm_xjst $00 byte object x justification rule
wwm_yjst $01 byte object y justification rule
wwm_type $02 byte object type (0=text, 2=sprite, 4=blob, 6=pattern)
wwm_skey $03 byte selection keystroke (upper case)
wwm_pobj $04 long pointer to object
wwm_item $08 word item number (-ve for index)
wwm_pact $0a long pointer to action routine (zero for index)
wwm.olen $0e menu object / index list entry length

QPTR The Pointer Environment 185

Working Definition Organisation
As the working definition is held together with pointers, it is not necessary for the data to

be contiguous, or even in related parts of the memory. The window management setup
routine, however, does transfer the data from the window definition to the working definition
in an orderly manner.

header
ww_lists (116)

information window list
wwi.elen (20) x ww_ninfo + 2

information object lists
wwo.elen (18) x ww_ninob + 2 x ww_ninfo

loose menu item list
wwl.elen (22) x ww_nlitm + 2

application window list
4 x ww_nappl + 4

application window definitions

The application sub-window definition set up by the window management routine
WM.SETUP is $64 bytes long. This definition may be extended by either an application setup
routine or the menu management setup routine.

An application sub-window definition set up by the menu management setup routine
WM.SMENU has the following structure:

application window definition
wwa.blen + 2 x wwa.clen + wwa.mlen (172)

column spacing list
wwm.slen (4) x wwa_ncol

row spacing list
wwm.slen (4) x wwa_nrow

column index index (optional)
(wwm.olen (14) x wwa_ncol)

row index list (optional)
(wwm.olen (14) x wwa_nrow)

menu row list
wwm.rlen (8) x wwa_nrow

menu object lists
wwm.olen x nr of objects

QPTR The Pointer Environment 186

Window Status Area

The window status area is used for communication between the application and the
window and menu management routines. The window status area contains the pointer
record, the tables giving the current sub-window and menu item, the control blocks for the
pan, scroll and split status of a sub-window and the tables giving the status of all menu
items.

The file keys_wstatus contains definitions of the symbols used in this section: it may
be INCLUDEd in any assembler files that manipulate window status areas.

There is a fixed size base area which is pointed to from the window working definition
header:

Window linkage area
ws_work $00 long pointer to window working definition
ws_wdef $04 long pointer to window definition

Window working area
ws_point $08 pointer record (24 bytes)
wsp_chid $08 long channel ID of window enclosing the pointer
wsp_swnr $0c word sub-window number enclosing pointer (or -1)
wsp_xpos $0e word pointer x pixel position (sub-window)
wsp_ypos $10 word pointer y pixel position (sub-window)
wsp_kstr $12 byte key stroke (or 0)
wsp_kprs $13 byte key press (or 0)
wsp_evnt $14 long event vector
wsp_jeve $14 byte job byte of event vector
wsp_weve $15 byte window byte of event vector
wsp_seve $16 byte sub-window byte of event vector
wsp_peve $17 byte pointer byte of event vector
ws_subdf $18 sub-window area definition (4 words)
wsp_xsiz $18 word sub-window x size (width)
wsp_ysiz $1a word sub-window y size (height)
wsp_xorg $1c word sub-window x origin
wsp_yorg $1e word sub-window y origin
ws_ptpos $20 long pointer position (absolute)
ws_wmode $24 word display mode for this window
ws_ciact $2c long pointer to current item action routine
ws_citem $30 word current item in sub-window
ws_cibrw $32 word current item border width
ws_cipap $34 word paper colour behind current item
ws_cispr $36 word spare
ws_cihit $38 current item hit area (absolute coordinates)
ws_cihxs $38 word hit area x size
ws_cihys $3a word hit area y size
ws_cihxo $3c word hit area x origin in sub-window
ws_cihyo $3e word hit area y origin in sub-window

QPTR The Pointer Environment 187

The current item action routine is called whenever the the pointer is moved, or may be
moved, while the current item is zero or positive. If this pointer is zero the internal current
item routines are called: these require all the rest of the current item status area to be
correctly set. If an action routine is supplied, then the $10 bytes after the action routine may
be redefined as required.

The fixed size area is followed immediately by the loose menu item status block which
gives the status of all the loose menu items. The block is indexed by the loose menu item
number. The status block should be preset by the application: thereafter it is maintained by
the window management routines.

Loose menu item status block

ws_litem $40 one byte per loose item
$10 is unavailable
$00 is available
$80 is selected)

The rest of the status area is in a free format. It may contain status blocks for the
application sub-window menus (if any) and pan and scroll control blocks. Since there is a
pointer from the window working definition to each of these blocks, they need not be
contiguous and may be in completely unrelated parts of the memory.

For each standard format sub-window, there is a status block giving the status of each
item in the sub-window menu.

Sub-window menu item status block

wss_item $00 one byte per menu item
$10 is unavailable
$00 is available
$80 is selected)

The status bytes in the item status blocks are used for communication between the
application and the menu handling routines. Initially, the status of each item is set by the
application. The window and menu drawing routines will draw each item using the
appropriate colours patterns and blobs. The byte is divided into two nibbles: the upper nibble
contains the required (or actual status), the lower nibble is zero except when an action
routine requires an item to be redrawn.

If an item is "hit", or selected by keystroke, then, if the item is available, the status is
changed. If an item is hit by a "do" then, if the item is available, the status is set to selected. If
an action routine requires the status of any items to be redrawn, then the new status should
be set in the upper nibble, and the least significant bit set.

Status Normal Redraw

unavailable $10 $11
available $00 $01
selected $80 $81

QPTR The Pointer Environment 188

For each sub-window, there may be an optional pan or scroll and split control block for
horizontal and vertical control of a window.

This block starts with the number of pannable or scrollable sections, followed by a list of
the start and end row or column number of each section. As usual, the start row or column is
included in the section, the end row or column is excluded.

Sub-window section control block header

wss_nsec $00 word number of sections

Sub-window section control block record

wss_spos $00 word section start pixel position
wss_sstt $02 word section start column or row
wss_ssiz $04 word section size (number of columns or rows)
wss.ssln $06 section status list entry length

If there is not a minimum size of ww.scarr for scroll arrows or ww.pnarr for pan
arrows, they are not drawn at all.

QPTR The Pointer Environment 189

Pointer Environment Changes

The following lists summarise the changes in the Pointer Toolkit, the Pointer Interface
and the Window Manager.

Pointer Toolkit Changes

v0.01 Original released version.

v0.02 RD_PTR of window with no loose or menu items in allowed.
MK_LIL with exactly one sprite/blob/pattern type item now works.

v0.03 CH_WIN now returns size change correctly.
RD_PTR of window with more than one menu sub- window works (used

to return as if an error had occurred, with D0=0).

v0.04 MS_SPD doesn't smash memory.

v0.05 Timeout set in MS_SPD, MS_HOT. CH_ITEM works for menu
sub-windows.

v0.06 SWDEF doesn't reference address -4. WREST added.

v0.07 Correct number of procs.

V0.14 RD_PRTRT introduced

QPTR The Pointer Environment 190

Pointer Interface Changes
Please note that this is taken directly from the iod_con2_ptr_version_asm file in the

SMSQ/E sources and it is best to refer to there for future versions.

Version Changes Comments

 V1.06.
 Key debounce improved. (Extension)

 v1.07.
 First internal mouse version. (Extension)
 Closing last window in particular (Extension)
 mode now restores all windows
 in other mode.

 v1.08.
 Avoids problems with closing unused Never open a console
 consoles (It used to be able to without using it.
 lose the keyboard queue.)
 Improvements to screen restoration on (Extension)
 window close.

 v1.09
 Prevents channel 0 from being closed. (Extension)
 Mouse movement stuffs cursor (Extension)
 keystrokes into keyboard queue.
 SD.WDEF (WINDOW from S*BASIC) Do explicit SD.POS after
 now resets cursor position. an SD.WDEF
 Multicolour patterns for blobs made Use only solid colours.
 usable.

 v1.10
 "Top" secondary is now the most Use SD.EXTOP to re-link
 recent one, not the first one.
 New TRAP IOP.FLIM, D0=$6C to find (Extension)
 permissible limits for window.
 New TRAPs IOP.SVPW/RSPW D0=$6D/6E (Extension)
 to save/restore part windows
 IOP.RPXL now implemented: new spec. (Extension)
 includes scanning
 FWIND now only detects managed
 secondaries of managed primaries
 IOP.OUTL can now move a secondary. Don't move secondaries.
 IOP.OUTL now deals with secondaries Re-define all
 that fall outside a re-defined secondaries when moving
 primary (now set to primary's hit primary.
 area).
 Odd shadow widths evened up. Use only even width
 shadows.
 IOP.SPTR now only sets new position, No fix possible.
 so it works properly.
 Unmanaged secondaries now limited to Ensure secondaries are
 managed primary outline, not managed
 whole screen.
 IOP.PICK ignores lock. Don't pick via a
 locked window.
 IOP.PICK allows keyboard queue to be (Cosmetic)
 grabbed, so cursor appears OK
 Hitting DO mouse button in keyboard (Extension)
 window stuffs an ENTER.
 Both buttons on mouse stuffs one or (Extension)

QPTR The Pointer Environment 191

 two character string.
 Dropping blobs under sprite in MODE 8 Don't drop blobs under
 fixed. sprite.
 Dynamic sprites implemented. (Extension)
 Pattern outside sprite mask is now (Extension)
 XORed into screen, not ORed.
 Extending an unmanaged locked Make primary managed
 primary's outline by opening a or don't do it.
 larger secondary now works.

 v1.11

 v1.12
 First PTR_GEN.
 v1.13
 Move window on odd pixel boundary/ Round to even boundary
 odd width now permitted (MODE 4). and width.

 v1.14
 ESC while doing special RPTR now gets
 through (got lost in vv1.xx-1.13).

 v1.15
 FWIND gets X size of sub-window Check returned pointer X
 correct, it was one too big coordinate size

 v1.16
 RPTR signals SCHED to make pointer
 visible.

 v1.17 first Atari ST Pointer Interface

 v1.18
 Patched to enable dropping of sprites Ensure Pointer is similar size
 and blobs which are larger than to object being dropped
 the pointer sprite.
 Save areas now owned by the same job (Cosmetic)
 as the channel, with null driver.
 Dummy CON is ROM CON, not current CON Fix for SpeedScreen

 v1.19
 CTRL F5 during MODE now works (!) I'm at a loss for words...
 RPIXL can now scan left/right for Check current pixel, set it,
 a given colour correctly scan for it, reset it
 Mode change between window open and Use window as soon as it's
 use is now OK. opened.
 Other dummy channels diverted via Fix for Lightning or other
 our linkage block, so MODE modified console drivers
 doesn't spot them.
 Cursor status cleared before MODE (Cosmetic)
 window redraws.
 RPTR does not signal SCHED so much - (Cosmetic)
 see V1.16.

 v1.20
 All PICKs now move pointer to (Cosmetic)
 primary centre, not just CTRL C

 v1.21
 Window and border changes clear No fix possible
 scheduler flag

 v1.22
 Pick windowless JOB now OK on ATARI Do not pick windowless jobs

QPTR The Pointer Environment 192

 v1.23
 CKEYON and CKEYOFF added to control Extension
 action of cursor keys
 WWA.KFLG added to window attributes
 for the same reason
 Type ahead enabled within a window Type slowly
 Third attempt at Thor 1 version Throw your Thor away
 Keypress suppressed on window change

 v1.24
 Thor 1 version allows Thor patch to be Throw your Thor away
 used before loading Lightning

 v1.25
 Thor 1 version supports all three
 buttons on the Thor mouse
 Failure of DEL_DEFB introduced in Curse CST, Thor Intl etc.
 Thor mods to v1.23 fixed

v1.26 (internal)
Wake event generated when 'picking' Extension
 with DO button or if required
 in IOP.PICK trap (D2=K.WAKE)

v1.27 (internal)
Wake events improved Cosmetic
Keyboard queue of locked, busy or no
 window stripped

v1.28
Escape from window identify restored
 (problem in 1.27 only)

v1.29
CTRL C spurious wake removed
Problem with rapid "CTRL C"s removed
 (introduced in version 1.23)
HIT while moving restored (missing
 since V1.23)

v1.30
PICK to center of top secondary
Pointer movement slowed while disk
 etc busy

v1.31
Bad driver for save area corrected.
No wake-up on cursor key strokes

v1.32
Allocates enough room for a 64x48 pointer sprite.
Improvements to out of window keystrokes.

V1.33
Improved dragging. Pointer movement restored from v1.30
Checks for cursor overlap on RHS.

V1.34
Pointer movement slowed again.

V1.35
Cursor suppression algorithm improved.

QPTR The Pointer Environment 193

V1.36
Corrected a fault in the V1.35 cursor suppression algorithm.
Pointer limiting introduced for dragging.

V1.37
Option to Freeze jobs on locking window.

V1.38
Close removes Fill buffer. Both ENTER keys on ST cause DO.

V1.39
IOP.RPXL removes pointer sprite.

V1.40
Higher RES mode supported

V1.41
Higher RES corrections

V1.42
Sprite / Blob dropping problems introduced in V1.40 fixed.

V1.43
Window area for non-well behaved windows can exceed 512x256.

V1.44
Some changes to sprite suppression / appearance

V1.45
More changes to sprite suppression / appearance

V1.46
IOW.SSIZ accepts -1,-1 for no change in size (size enquiry)

V1.47
Window Move $84 has invisible sprite

V1.48
Partial save / restore corrected for non-QL screen sizes.
Dragging restored (V1.45) even when pointer is being reset

V1.49
Sprite remove checks updated for wider screens.

V1.50
Partial save/restore updated for monochrome mode.

V1.51
sprite suppression / appearance restored to old style.

V1.52
Open CON (copyc) "out of memory" error recovery fixed.

V1.53
Initialisation works even if no RTC

V1.54
Modification of Atari polling routine

V1.55
IOP.RPXL corrected for non QL screens

V1.56
IOP.SVPW memory allocation modified - should have no effect

QPTR The Pointer Environment 194

V1.57
Corrections to V1.56 for QDOS. MODE improvements

V1.58
Corrections to V1.55

V1.59
Cursor disabled on pointer operations (except rptr)

V1.60
Closing a secondary of an unlocked primary does not update the

primary's
save area (avoiding overwrite)

V1.61
MODE change restored on QXL (lost in 1.57?)

V1.62
IOP.OUTL does not smash A1
PICK ignores badly behaved secondaries

V1.63
IOP.OUTL operation unchanged, but returns "bad parameter" if move
requested and the size has changed

V1.64
SD_WMODE is bits 3 to 1 only of SYS_QLMR (SV_MCSTA).

V1.65
Dummy queues re-organised

V1.66
A number of arbitrary changes (IOP.OUTL, IOP.SPTR etc.)
Changes to timings of hide / show etc.

V1.67
iop.svpw returns D1 = 0 and releases memory if fails.

V1.68
QIMI suppression config

V1.69
A certain amount of tidying up which should not make a difference

V1.70
pt..move not cleared by RPTR on out of window
*
V1.71
..... but sub-window number etc are cleared by RPTR on out of window

V1.72
accumulated set up updates including on edge of window events, job
events, wake speed = 0.

V1.73
wallpaper colour is now drawn on the fly (MK)
16 bit shadow routine added (MK)

V1.74
added mode 64 (true colour in 32bit) for sprites (MK)
added even more modes (JG & MK)
fixed crashes and weird behaviour in low memory situations (MK)
added support for large sprites (MK)

QPTR The Pointer Environment 195

no more MOVEP for Qx0 (FD)

V2.00
Bugfixes for some EE traps, keep A1 as per documentation (WL)
Added support for alpha blending and RLE compression of sprites (MK)
New con/ptr vectors concept introduced (MK)
Better handlng of system sprites, many more system sprites introduced

(MK)
8 bit Aurora GD2 driver, also introduced in QPC (MK)

V2.01
Fixed wallpaper on mode change (MK)
More con vectors (WL)
More system sprites (MK)

V2.02
Support for sprites with no (=solid mask) (MK)
Fixed high colour shadow at the overlapping part (MK)

V2.03
Support for background update of covered windows (MK)
New con vector pv_bgctl (MK)
New SBASIC commands PE_BGOFF, PE_BGON (MK)
SBasic cannot be killed by changing the screen size (MK)
Screen is restored when an unbehaved window is changed/closed (MK)

V2.04
Default value for background I/O now configurable (MK)
New, optional, CTRL+C behaviour (configurable) (MK)

V2.05
A few fixes for QDOS (MK)

QPTR The Pointer Environment 196

Window Manager Changes
Please note that this is taken directly from the ee_wman_versions_asm file in the

SMSQ/E sources and it is best to refer to there for future versions

 V1.04 WM.DRBDR added

 V1.05 Zero text pointers allowed, information blobs corrected

 V1.06 CHWIN returns size change. Initial pointer set rel hit
 area. Fixed window sizes accepted by SETUP. BREAK
 detected. Pending newline problems in information windows
 removed. Menu sub-window paper set before scrolling.

 V1.07 Lots of new routines. SSCLR and ARROW made regular fmt.

 V1.08 CHWIN fixed for secondaries/cursor keys.

 V1.09 Non-cleared info windows allowed.
 Vectors $48 to $74 added.

 V1.10 Setup correct number of columns > 3.
 Set pointer position correctly in odd position
 application sub-window.

 V1.11 Returns user defined message if no PTR.

 V1.12 Fractional scaling bug fixed.

 V1.13 WM.MSECT extended to accept cursor keys, SPACE and ENTER
 in arrow rows.
 DO/ENTER in arrow row of single item menu section made
 equivalent to HIT/SPACE.
 Cosmetic improvements to menu and current item handling.

 V1.14 WM.DROBJ updated to draw sprites 1 to 7 in the right
 place.

 V1.15 Sleep and wake event keystrokes added to WM.RPTR.
 Characters in the range $09 to $1f recognised in WM.RPTR.

 V1.16 Improved wake. Control codes less than 9 accepted.
 WM.RNAME, WM.ENAME return terminator in D1 as it should.

 V1.17 (int) Pan/scroll bars at last.

 V1.18 (int) Pan/scroll arrows made optional, bars tidied up.

 V1.19 (int) WM.SWAPP corrected for application windows >0.
 Improvements to out of window keystrokes.
 WM.CHWIN now allows cursor keys for pull down window
 moves - regardless of circumstances.

 V1.20 (int) Out of window wake accepted again (went in 1.19).

 V1.21 (int) DO anywhere in window accepted.

 V1.22 (int) Constant Spacing in menus.

 V1.23 (int) Repeated selection key handled.
 Dragging on pan/scroll bars implemented.

QPTR The Pointer Environment 197

 V1.24 Improvements to FSIZE for windows variable in two dims.

 V1.25 Further improvements to pan/scroll bars.

 V1.26 WM.STLOB status set OK.
 WM.UPBAR added.

 V1.27 WM.SWLIT now sets cursor position using justification.
 WM.RNAME WN.ENAME start from cursor position.

 V1.28 Pan/scroll bars with no sections cleared (V1.26, V1.27)

 V1.29 Sub-window select keystroke (-1 in D2) re-introduced.

 V1.30 Sub-window control routine called only on move or hit.
 Window origin scaleable.
 DRBAR can draw full length bar (V1.26-V1.29).
 Event with no loose item accepted anywhere in window.

 V1.31 Underline nth character of text type -n.
 WM.MHIT returns D4=0 if action or control routine called.

 V1.32 DO item action routine called on DO in window

 V1.33 Text position set before character size set (prevents
 spurious scroll

 V1.34 Split cannot generate empty sections.

 V1.35 Character size only set if non-standard.
 Requires 1.46 Pointer.

 V1.36 WDRAW corrected so as not to smash d5/d6 (error in 1.35).

 V1.37 Scaling of menu spacing.
 Fixed menu spacing (first spacing negative) allowed
 in definition.

 V1.38 Minimum limit for window rounded up to 4 pixel boundary.

 V1.39 CHWIN does not smash D4 and D7 on move.

 V1.40 Underline permitted for text starting with spaces.

 V1.41 WM.RNAME WM.ENAME does not edit text longer than window.

 V1.42 Extended WM.RNAME WM.ENAME

 V1.43 Set window resets character size to 0,0

 V1.44 Pan and scroll bars corrected for border >1

 V1.45 V1.44 Corrected

 V1.46 CSIZE reset when no info text item

 V1.47 Corrects version 1.46

 First SMSQ/E version
 V1.48 allows error messages longer than 40 characters

 V1.49 Attempts to remove 4096 item / row / column problems

QPTR The Pointer Environment 198

 V1.50 WM.RPTRT introduced

 V1.51 and returns on job event

 V1.52 and checks explicitly for D3 reset by app sw hit

 V1.53 underscore checks improved

 V1.54 high colour definition introduced (early test version)

 V1.55 high colour changes finished (MK)
 introduced system palette (MK)
 wm.setsp, wm.getsp, wm.trap3 added (MK)
 rewrote most of the scroll/pan bar draw routines (MK)

 V2.00 wm.opw, wm.ssclr, wm.jbpal added (MK)
 Sprites may be drawn differently depending on the item
 status (WL + MK)

 V2.01 New window move routines & Config Block (WL + MK)
 Bugfix for object drawing & wman rptr routines (WL & MK)
 Fixed bug for stippled borders in WMAN (WL)

 V2.02 Fixed WM_BLOCK (GG + MK)

 V2.03 Fixed pointer save on new move operation (wl)

 V2.04 Fixed spurious outline when using outline move, on mouse button release

 V2.05 New vector wm_cpspr to copy a sprite definition (MK)
 Fixed error return of wm.jbpal (MK)
 Double 3d border type fixed (MK)

 V2.06 New window move with transparency (wl)

 V2.07 menu appsub wdw may have csizes for text objects (wl)

QPTR The Pointer Environment 199

Utilities

Two utility programs are provided: they are ordinary EXECutable programs which may be
started from S*BASIC or Qram's FILES menu.

CVSCR
This utility converts a screen image file into a format suitable for loading into the PAINT

demonstration program. It requests an input filename, and checks that it is exactly 32k long,
and of an appropriate type (not executable). If the input file passes these tests, an output
filename is requested, into which the processed file will be written: if this already exists then
you are asked whether it is OK to overwrite it. Finally the program asks which screen mode
the screen image was in, there being no way to determine this from the file, and writes out
the converted file.

The conversion process adds a 10-byte header onto the start of the screen image data,
consisting of a flag, X and Y sizes (in pixels), line length in bytes, and the mode flag.

STKINC
This utility is used to process S*BASIC programs which use the Window Manager

facilities of the Pointer Toolkit, and have been compiled using v3.12 or earlier of the
Q_Liberator compiler. It is not required with v3.21 onwards - if you have this or a later
version then you can compile and run a program using the Window Manager in exactly the
same way as any other. STKINC fixes the problem caused by the Window Manager using
more stack than Q_Liberator provides, by increasing the provision. This modification needs
to be done in the file header, the compiled code and the run-time system, so the run-time
system must have been included in the object file. One filename is requested, and the file is
converted in place as no size change is involved. The program will usually notice if the file is
not a Q_Liberated object file including the run-time system, and complain.

QPTR The Pointer Environment 200

FIXPF
This utility takes the form of a S*BASIC procedure, and may be used to restore the ROM

version of any built-in procedure or function. If required, it should be loaded into the resident
procedure area by your BOOT file, as described on page 5.

FIXPF should never be needed! Unfortunately some packages "fix bugs in" or "improve
on" the way S*BASIC works by re-defining existing ROM routines, and in the process cause
more problems than they cure. An example is the way the RESPR function can be re-defined
to allocate space in the common heap, which "avoids the problem" of not being allowed to
reserve more space in the resident procedure area once jobs are running. It is also very
dangerous, as the heap space could be returned and re-used, resulting in a crash when
procedures which were in that space are called. We have also seen examples of RESPR
being re-defined within a program: when that program goes away, taking the new RESPR
with it, you get problems.

You can even use FIXPF on SuperToolkit commands if you like! If you find that the
"improved" versions of SAVE and LOAD keep using the defaults to save or load from the
wrong device, you could FIXPF them so they need an exact filename, as before. This would
also get rid of the "File already exists - OK to overwrite?" message.

The syntax of the procedure is:

FIXPF 'name'

The quotation marks are required, as you can't use procedures as parameters. The
procedure or function name should be an original QL ROM routine. You can FIXPF a routine
as often as you like without causing problems.

Known candidates for being FIXPFed are any re-defined versions of RESPR, and the
SPEEDSCREEN version of MODE when the Pointer Interface is installed. The Pointer
Interface takes care of all MODE calls, not just S*BASIC ones as SPEEDSCREEN does, so
the new version of MODE is unnecessary: in fact it can be dangerous - we have seen "total
lockups" resulting from trying to pop up QRAM after the SPEEDSCREEN MODE has been
used. This problem may be cured in future versions.

QPTR The Pointer Environment 201

Troubleshooting

You may encounter problems with the Pointer Toolkit: the following list is by no means
exhaustive, but covers some of the most likely causes of error.

My program (or one of the demos) worked OK yesterday, but it doesn't work today.
This is usually caused by changing your BOOT file, or some other aspect of your system not
directly connected with the program itself. In particular, you must set S*BASIC's outline with
an OUTLN #0... call to use all but the simplest parts of the Toolkit: if you don't, then the
Pointer Interface will assume that S*BASIC is "unmanaged", and not bother to check for sub-
windows, user-defined pointers and so on.

My program never returns from a "read pointer" call. You can only use a "managed"
window for pointer input: if you use an unmanaged window then the pointer always seems to
be outside it. A window can be made managed by a call to OUTLN or DR_PPOS from
S*BASIC, or to the IOP.OUTL TRAP or WM.PRPOS vector in machine code.

I don't get my special sprite, just the arrow. User-defined sprites appear in sub-
windows as a result of a call to SWDEF or IOP.SWDF to set up the appropriate data
structure. Sub-windows will be ignored if their "parent" window or its primary (or both) are
"unmanaged". They will also be ignored if there is a gap in the sub-window list, as the list is
terminated by a zero pointer so a zero in the middle of the list is interpreted as an end of list
marker.

My program works when interpreted, but not when it's compiled. S*BASIC programs
using the Pointer Toolkit can't be compiled with the Super/Turbocharge compilers, as they
can't cope with array parameters or results returned in the parameter list. If compiled with
Q_Liberator then you will have problems if you have used Window Manager routines but
have not used the STKINC utility on the resulting program. The program will not work if its
outline has not been set: see above.

My compiled program starts off OK but then it crashes. This is usually caused by not
using the STKINC utility where appropriate: it can also happen if you haven't specified
enough heap, stack or buffer space for the program.

My machine code program crashes in the Window Manager. This is very often
caused by an incorrect window definition, which causes the setup routine WM.SETUP to use
more space, when creating the working definition, than was anticipated. If this space is in the
common heap then the following heap header will be corrupted, resulting in a system crash
instantly or half an hour later, depending.

One or more of the items doesn't get selected on its keystroke. When specifying a
keystroke to select a menu item, remember that the character must be specified in upper
case, although it doesn't matter if the key pressed is upper or lower case. Remember also
that event keys such as HELP, CANCEL and so on are translated to have very low key
values such as 4, 3 and so on.

I get an "out of range" error on a WINDOW command that worked before. Managed
secondary windows, which are needed for most of the examples, may not be positioned, by
a call to either OUTLN or WINDOW, outside the outline of their primary window. The
examples provided in QPTR assume the use of the BOOT file provided, which sets the
S*BASIC's outline to the whole screen - if you use a different BOOT file setting another
outline then they may stop working.

QPTR The Pointer Environment 202

Index

A
A_CTRL.. 166
A_END... 166
A_MENU.. 167
A_OBJE.. 166
A_RLST.. 167
A_SLST.. 167
A_WDEF.. 167
A_WINDW.. 167
A_WLST... 167
ACTION Macro... 166
Action routine... 30
ALCSTAT... 166
Alpha channel... 150
ALT arrow... 17
ALT SPACE.. 45
Application object list.. 30
Application spacing list...30
Application sub-window.. 17, 30
Application sub-window definition...182
Application Sub-Window Draw Routine..97
Application Sub-Window Hit Routine..112
Application Sub-window List...31, 181
Application Sub-Window Setup Routine...92
Application Window Control Routine..116
APPN.. 166
Area Mask.. 154
ARROW.. 166
Arrow keystrokes.. 17
Available... 18

B
Background I/O... 31
BAR.. 167
BLOB..16, 18, 31, 154, 167
Blob Definition.. 154
BOOT files.. 12
BORDER.. 168
Bottom window... 31

C
Cancel.. 16, 107
Canonical pattern... 148
CH_ITEM.. 61
CH_PTR... 61
CH_WIN... 61
Change Window Event Handling..121
Colour... 146
Colours on new WMAN calls..146
Compiled S*BASIC... 9
Control definition... 31
Control routine.. 31
CSIZE... 168
CTRL.. 168
CTRL F3... 17
CTRL F4... 17

QPTR The Pointer Environment 203

CTRLMAX.. 168
Current item.. 18
Cursor as sprite.. 139
CURSPRLOAD... 139
CURSPROFF... 139
CURSPRON... 139
CVSCR... 24

D
DEMO_ programs... 25
DEMO_BAS... 23
Do.. 15p., 107
DR_ADRW... 58
DR_AWDF.. 59
DR_IDRW... 59
DR_IWDF... 59
DR_LDRW.. 58
DR_LWDF.. 59
DR_PPOS.. 39, 58
DR_PULD... 39, 58
DR_UNST.. 59
DRAW.. 168
Draw border around current item..106
Draw information sub-windows...103
Draw routi... 32
Draw routine... 32
Draw window contents..96

E
Edit name... 124
EDSPR... 27
EDSPR_BAS.. 23
ENTER... 15
ESC.. 16, 107
Event Vector... 20
Extended Environment... 8
External Pan and Scroll..118

F
F1... 16
Find menu section.. 114
Find size of layout... 89
Find window limits.. 71
FIXPF... 9, 24
Full window move... 21
Full window move with transparency..21

G
Get Pointer Information..75
Get string corresponding to error code...125
GST Macro Assembler... 9

H
Header block.. 178
HELP.. 16, 168
Hit... 15, 107
Hit area... 32
Hit routine... 32
HOT_STUFF.. 45
HOTKEY buffer... 45
Hotkey System II.. 8

QPTR The Pointer Environment 204

I
I_END... 169
I_ITEM.. 169
I_OLST... 169
I_WINDW... 169
I_WLST.. 170
IATTR... 168
IBAR... 169
ILST.. 169
Index item... 32
INFO... 169
Information Object List.. 33, 181
Information Sub-Window..17, 181
Information sub-window list.. 33
Initial position.. 33
INK... 169
IO channel.. 16
IOP.FLIM.. 71
IOP.LBLB... 79
IOP.OUTL... 82
IOP.PICK.. 84
IOP.PINF.. 75
IOP.RPTR.. 76
IOP.RPXL... 78
IOP.RSPW... 73
IOP.SLNK... 74
IOP.SPLM.. 81
IOP.SPRY.. 81
IOP.SPTR... 83
IOP.SVPW.. 72
IOP.SWDF.. 85
IOP.WBLB.. 79
IOP.WPAP.. 70
IOP.WRST.. 86
IOP.WSAV.. 86
IOP.WSPT.. 80
ITEM... 18, 33, 169
Item attributes... 33
Item number... 33

J
Job event.. 34
Join... 17
JUSTIFY... 170

K
KEYS_.. 24
KEYS_COLOUR... 24
KEYS_CON.. 24
KEYS_K... 24
KEYS_QDOS_PT... 24
KEYS_WDEF... 24
KEYS_WMAN... 24

L
L_END.. 170
L_ILST.. 170
L_ITEM... 170
LAYOUT... 170
LBLOB.. 45

QPTR The Pointer Environment 205

Left button.. 15
Locked window... 34
LOOS... 170
Loose item list... 34
Loose menu.. 17
Loose menu item.. 17, 34
Loose Menu Item Action Routine..117
Loose Menu Item Drawing.. 102
Loose Menu Items List...180

M
Managed window.. 35
MENSIZ.. 171
Menu Item Attributes..180
Menu Macros.. 163
Menu sub-window... 17, 35
MENU_MAC... 24
MK_AOLST.. 56
MK_APPW... 57
MK_ASL... 56
MK_AWL.. 57
MK_CDEF.. 56
MK_IOL.. 56
MK_IWL.. 57
MK_LIL... 55
MK_RWL.. 57
MK_WDEF.. 39, 57
MKPAT... 46
MKSELK... 174
MKSTR... 174
MKTEXT... 175
MKTITL... 175
MKTITS.. 175
MKXSTR.. 175
MOVE... 17
Move Modes... 21
Move with transparency.. 21
MS_HOT.. 46
MS_SPD... 46

N
Ne... 32

O
Object... 18
Objects comprising an item.. 18
OBJEL.. 171
OLST.. 171
ORIGIN... 146, 171
Outline.. 35
Outline move.. 21
OUTLN... 13, 46

P
PAINT... 23
PAINT program... 28
PAINT_BAS.. 23
Pan / Scroll standard menu..120
Pan bar... 17
Pan/Scroll bars... 35
Pannable and Scrollable Sub-Windows..118

QPTR The Pointer Environment 206

Pannable sub-window.. 17
Panning.. 17
Partial Save Area.. 155
Partial Save Area Format...155
PATTERN...16, 18, 35, 154, 171
Pattern Definition.. 154
PICK... 36, 47
Pick window.. 84
Pile... 36
Pointer.. 36
Pointer Environment... 8, 15, 36
Pointer Interface... 8, 36
Pointer Toolkit.. 8
POSN... 171
PREST... 47
Primary window.. 16, 36
Primary Window Positioning... 94
PSAVE... 47
Pull Down Window Open.. 94
PV_BGCTL... 140
PV_CMBBLK.. 141
PV_CURSP.. 139
PV_FSPR... 135
PV_MBLK... 138
PV_PINF.. 134
PV_SIZE... 137
PV_SSPR... 136

Q
Q_Liberator.. 9
QDOS_IO... 24
QRAM... 13
QTYP.. 13

R
RD_PTR... 32, 60
RD_PTRT... 60
Read name... 124
Read pixel colour.. 78
Read Pointer... 76, 110
Read Pointer with timeout and job events..111
Resident extension... 10
Restore part window... 73
Right mouse button.. 15
RLE compression... 150
RLST.. 171
RMODE.. 48
ROM routines... 9
ROWEL.. 171
RPIXL... 48
RPTR.. 49

S
S_END... 173
S*Basic... 2, 8
Save part window... 72
Scan order.. 37
Scroll bar.. 17
Scroll standard menu..120
Scrollable sub-window.. 17
Scrolling.. 17
Secondary window... 16, 38

QPTR The Pointer Environment 207

Sections.. 38
Selected... 18
Selection key.. 38, 56
SELKEY... 172
Set Bytes in Linkage Block...74
Set Information Object..123
Set Loose Item Object.. 122
Set pointer limits... 81
Set pointer position... 83
Set Sub-Window Definition... 101
Set Sub-Window Definition List..85
Set system palette number of job...130
Set wallpaper.. 70
Set Window Outline.. 82
Set window to application sub-window...105
Set window to application sub-window section...105
Set window to info window...104
Set window to loose item.. 104
SETR.. 172
Setup.. 39
Setup a managed window..90
Setup routine.. 39
Setup standard sub-window menu...93
SETWRK.. 172
SHIFT ALT arrow.. 17
SIZE... 17, 172
Size checking... 39
SIZE_OPT.. 172
SLST.. 173
SOFFSET... 172
SP_GET... 64
SP_GETCOUNT... 63
SP_JOBOWNPAL.. 64
SP_JOBPAL... 64
SP_RESET... 63
SP_SET.. 64
SPACE... 15
SPARE... 172
SPCEL.. 173
SPHDR... 51
SPLIN... 52
Split.. 17
SPRAY... 52
Spray pixels in blob.. 81
SPRITE... 16, 18, 39, 148, 173
SPRITE name... 173
Sprite block... 152
Sprite control byte... 150
Sprite Definition.. 148
Sprite for a cursor... 139
Sprite header.. 149
Sprite mode byte.. 149
Sprite options... 153
SPRSP... 50
SPSET.. 52
SPTR.. 53
Standard Menu Action Routine...115
Standard Menu Drawing... 98
Standard Sub-Window Index..99
Standard window hit routine...113
Status... 39
Status block.. 40
Stipple format... 146

QPTR The Pointer Environment 208

STKINC.. 24
Sub-menu... 40
Sub-window... 16p., 40
Supercharge... 9
SuperToolkit II.. 13
SWDEF.. 53
SYSSPRLOAD... 65, 136
System palette.. 40
System palette entries.. 131

T
Tem attributes... 33
TEXT.. 16, 173
TEXT name.. 173
Text Macros.. 174
TEXT_MAC.. 24
Timing out... 41
Top of the pile... 16
Top window.. 41
Transient programs.. 10
Turbo.. 9
TYPE.. 173

U
Unavailable... 18
Unlockable window... 41
Unlocked window.. 41
Unmanaged window... 41
Unset.. 41
Update pan/scroll bars..100

W
WATTR... 173
WBLOB.. 54
WINDOW.. 16, 173
Window Area Restore... 86
Window Area Save... 86
Window Attributes... 179
Window definition... 18, 42
Window definition block.. 179
Window Manager.. 8, 42
Window move... 21
Window move with transparency..21
Window Reset.. 94
Window Unset.. 94
WM_BLOCK... 63
WM_BORDER.. 63
WM_INK... 63
WM_MOVEALPHA... 22
WM_MOVEMODE.. 21
WM_PAPER... 63
WM_STRIP.. 63
WM.CHWIN.. 121
WM.DRBDR... 106
WM.ENAME... 124
WM.ERSTR.. 125
WM.FSIZE... 88p.
WM.GETSP.. 127
WM.IDRAW.. 103
WM.INDEX... 32, 99
WM.JBPAL... 130
WM.LDRAW... 102

QPTR The Pointer Environment 209

WM.MDRAW.. 32, 98
WM.MHIT... 113
WM.MSECT... 114
WM.OPW... 129
WM.PANSC.. 31, 120
WM.PRPOS.. 88, 94
WM.PULLD... 88, 94
WM.RNAME... 124
WM.RPTR.. 110
WM.RPTRT.. 111
WM.SETSP.. 126
WM.SETUP.. 39, 88, 90
WM.SMENU... 88, 93
WM.SMENU... 39
WM.SSCLR.. 130
WM.STIOB... 123
WM.STLOB.. 122
WM.SWAPP... 105
WM.SWDEF... 101
WM.SWINF.. 104
WM.SWLIT... 104
WM.SWSEC... 105
WM.TRAP3.. 128
WM.UNSET.. 41, 94
WM.UPBAR.. 100
WM.WDRAW.. 96
WM.WRSET... 94
Working definition... 42
WREST.. 54
Write a blob.. 79
Write a line of blobs.. 79
Write a sprite.. 80
WSPRT.. 54
WSTATUS.. 24
WWA_NXSC.. 118
WWA_NYSC.. 118
WWORK... 24

X
XLAYOUT... 173

QPTR The Pointer Environment 210

	Foreword
	Short Table of Contents
	Long Table of Contents
	Introduction
	The Pointer Toolkit
	Where to start
	Compiled S*BASIC
	Bug "fixes"

	History, Geography, Philosophy & Economics
	Some sample BOOT files
	A simple BOOT file to load and enable QRAM
	Including SuperToolkit II with QRAM
	A BOOT file for QRAM and QTYP together
	SuperToolkit II, QMON, QRAM, QTYP, QPTR, and RAM disc
	QRAM and Jochen Merz's QD
	QRAM and Q_Liberator runtime system and extensions

	The Pointer Environment
	Pointer
	Windows
	Menus
	Sub-Windows
	Objects, Items etc.
	Window Definition
	Event Vector
	Move Modes

	What you get
	The Demonstration Programs
	The DEMO_ programs
	General layout
	The EDSPR program
	The PAINT program

	Concepts
	Action routine
	Application object list
	Application spacing list
	Application sub-window
	Application sub-window list
	Background I/O
	Blob
	Bottom window
	Control definition
	Control routine
	Draw routine
	Hit area
	Hit routine
	Index items
	Information object list
	Information sub-window list
	Initial position
	Item
	Item attributes
	Item number
	Job event
	Locked window
	Loose menu item
	Loose item list
	Managed window
	Menu sub-window
	Outline
	Pan/Scroll bars
	Pattern
	Pick
	Pile
	Pointer
	Pointer Environment
	Pointer Interface
	Primary window
	Scan order
	Secondary window
	Sections
	Selection key
	Setup
	Setup routine
	Size checking
	Sprite
	Status
	Status block
	Sub-menu
	Sub-window
	System palette
	Timing out
	Top window
	Unlocked window
	Unlockable window
	Unmanaged window
	Unset
	Window definition
	Window Manager
	Working definition
	A typical window

	S*BASIC
	Keywords
	Pointer Interface routines
	Window Manager routines
	Definition routines
	Drawing routines
	Access routines
	Change routines
	Array parameters
	New colour handling
	Palette handling
	System palette keywords
	Job palette keywords

	System sprites handling

	Index of keywords

	Assembler
	Programmer's Interface
	Pointer Interface
	Window Manager
	Setup Routines
	Set Window Routines
	Drawing Routines
	Entire window drawing routine
	Part window drawing routines
	Set Window To Partial Areas Routines
	Draw border around current item

	Access Routines
	Window Manager Read Pointer
	Current Item
	Keystroke Selection
	Pannable and Scrollable Sub-Windows
	External Pan and Scroll
	Internal Pan and Scroll

	Sub-Window Indices
	Window Move and Change Size

	Utility routines
	Index of TRAPs and vectors

	New CON Vectors
	Index of CON Vectors

	Data Structures
	Pointer Interface
	Channel Definition block
	Extended Channel Block
	Graphics objects
	Form
	Size
	Repeat
	Origin
	Colour
	Colours on new WMAN calls
	Pattern
	Sprite Definition
	Sprite header
	Sprite mode byte
	Sprite control byte
	Alpha channel
	RLE compression
	Sprite block
	Sprite options

	Blob Definition
	Pattern Definition
	Area Mask
	Partial Save Area Format

	Window Manager
	Window Definition
	Structure
	Window definition
	Window Attributes
	Menu Item Attributes
	Lower Level Definitions
	Loose Menu Items List
	Information Sub-Window
	Information Object List
	Application Sub-window List
	Menu Object Lists
	Application sub-window definition

	Menu Macros
	Structure
	Rules and reserved symbols

	Text Macros
	Index of macros

	Working Definition
	Header block
	Window definition block
	Window Attributes
	Menu Item Attributes
	Loose Menu Items List
	Information Sub-Window
	Information Object List
	Application Sub-window List
	Application sub-window definition
	Menu Object Lists
	Working Definition Organisation

	Window Status Area
	Window linkage area
	Window working area
	Loose menu item status block
	Sub-window menu item status block
	Sub-window section control block header
	Sub-window section control block record

	Pointer Environment Changes
	Pointer Toolkit Changes
	Pointer Interface Changes

	Utilities
	CVSCR
	STKINC
	FIXPF

	Troubleshooting
	Index

